
An Approach to

Large Scale Radar-Based

Modeling and Simulation

THESIS

Lester C. Long, IV, Captain, USAF

AFIT/GE/ENG/10-14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GE/ENG/10-14

An Approach to

Large Scale Radar-Based

Modeling and Simulation

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Lester C. Long, IV, BSEE

Captain, USAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/10-14

Abstract

This research presents a method of aggregating, or reducing the resolution, of a com-

monly available Department of Defense (DoD) simulation. It addresses the differences

between varying levels of resolution and scope used in the DoD’s hierarchy of models

pyramid. A data representation that aggregates engagement-level simulation data

to use at a lower resolution level, the mission-level, is presented and analyzed. Two

formats of implementing this data representation are developed and compared: the

rigid cylinder format and the expanding tables format. The rigid cylinder format

provides an intuitive way to visualize the data and is used to develop the theory. The

expanding tables format expands upon the capabilities of the rigid cylinder format

and reduces the simulation time. Tests are run to show the effects of each format

for various combinations of engagement-level simulation inputs. A final set of tests

highlight the loss in accuracy incurred from reducing the number of samples used

by the mission-level simulation. These tests culminate the work by deriving a no-

tional scenario, applying the data cylinder representation, and exploring the realistic

problem of comparing accuracy and compuational constraints.

iv

Acknowledgements

Thanks to God for bringing me to the road I needed to follow, thanks to Maj

Saville for guiding me down a road I could not see, and thanks to my wife and son

for accompanying me down that road, no matter how bad a driver I am.

Without God leading me through this process, I would have been lost. I cannot ex-

press the joy and comfort that my relationship with Christ brought to me throughout

my time at AFIT.

Many thanks to my advisor, Maj Michael Saville, for helping me always stay

on track and to never get too comfortable. His constant ideas and input are the

foundation of this thesis. I do not know what I would have done without an advisor

to give me so much help and direction.

Last and close to my heart are my friends and family. To all my friends, especially

those here at AFIT, many thanks for your friendship and encouragement throughout

this process. To my parents, step-parents, in-laws, brothers, and my wife’s very, very

extended family: Thank you for your love and for always believing in me. To my son:

Thank you for providing me with such great distractions and thank you for allowing

me to work, just on the other side of my office door. You are loved more than I

often had time to show you. To my wife: Nothing can express how your support and

understanding made this process bearable for me. Thanks for always letting me work

when I needed to, and thanks for always waiting to see me when I was done. I hope

to be able repay your kindness many times over in the future.

Lester C. Long, IV

v

Table of Contents

Page
Abstract . iv
Acknowledgements . v
Table of Contents . vi
List of Figures . ix
List of Tables . xi
List of Symbols . xii
List of Abbreviations . xiii

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Proposed Solution . 3
1.4 Document Organization . 4

II. Literature Review and Background Material . 6

2.1 Motivation from Historical Achievements and Current
Guidance . 6
2.1.1 Historical Achievements . 6
2.1.2 Current DoD Policy and Guidance . 8

2.2 Models and Simulation in the Military . 10
2.2.1 Hierarchy of Models . 10
2.2.2 Example of an Engagement-Level Model . 13
2.2.3 Large-Scale Modeling and Simulation . 14
2.2.4 Examples of Large-Scale Modeling and

Simulation . 16
2.3 Computer Simulation Principles and Examples . 17

2.3.1 Computer Simulation Principles . 17
2.3.2 Common Simulation Examples . 20

2.4 Aircraft Survivability and Detection Principles . 24
2.5 Computational Lessons Learned . 27

III. A Method to Adapt an Engagement-Level Simulation to a
Mission-Level Simulation . 29

3.1 Designing a Mission-Level Data Representation . 29
3.2 Removing the Limitations of the Data Cylinder . 36
3.3 Utilizing the Data in a Mission-Level Simulation 41

3.3.1 General Design . 41
3.3.2 Programming Application Selection . 42
3.3.3 Aircraft and SAM Interactions . 42
3.3.4 Calculating the Probability of Survival . 43

vi

Page

3.4 Developing a Scenario and Tests to Evaluate the
Mission-Level Simulation and Data Cylinder Efficiency 49

3.4.1 The Scenario . 49

3.4.2 Tests . 53

IV. Evaluating the Performance of the Mission-Level Simulation
and Data Cylinder Formats . 56

4.1 Aggregate Simulation Functional Demonstrations 56

4.1.1 Generate Aircraft and SAM Representations 56

4.1.2 Generate a Full Scenario with Aircraft
Responses to SAM Sites . 58

4.2 Engagement-Level Ps Data Generation, Storage, and
Retrieval . 60

4.2.1 The Estimated Duration of an
Engagement-Level Simulation . 60

4.2.2 Generating the Pre-Computed Ps Data Set 62

4.2.3 Accessing the Pre-Computed Ps Data . 72

4.2.4 Performing Run-Time Calls to Create Additional
Ps Data . 76

4.2.5 Overall Comparison of the Two Data Cylinder
Formats . 77

4.3 Extended Duration Tests . 78

4.3.1 Test Description . 78

4.3.2 Test Results . 80

V. Improving Efficiency Using the Data Cylinder Representation 85

5.1 A Notional Scenario . 85

5.1.1 Scenario Definitions . 86

5.1.2 Scenario Descriptions . 87

5.2 Applying the Data Cylinder Representation to the
Notional Scenario . 89

5.2.1 Data Cylinder Representation Applicability 89

5.2.2 Pre-Computed Data Set . 91

5.3 Reduced Sample Accuracy Tests . 92

5.3.1 Limitation of Provided Results . 92

5.3.2 Reduced Sample Accuracy Test Description 92

5.3.3 Accuracy Results from the Reduced Sample
Accuracy Tests . 93

vii

Page

VI. Conclusions and Future Work . 98

6.1 Conclusions . 98
6.2 Additional Research . 99

Bibliography . 101

viii

List of Figures

Figure Page

1. Hierarchy of Models Overview. 2

2. Many Aspects of Resolution. 12

3. Decomposition of a Large-Scale System. 15

4. Ps Tree Diagram. 25

5. Continuous and Discrete Flight Path . 31

6. Opposing Orientations of an Aircraft to SAM Site 32

7. Opposing Orientations with the Aircraft in the Center 33

8. Detailed View of a Data Cylinder . 34

9. Different Countermeasures Associated with Data
Cylinders . 35

10. A Depiction of One Element in the Data Representation 38

11. Expanding Tables Format Example . 40

12. Scenario and Sample Space Used to Develop PMC 45

13. Sample Space Used to Calculate Pn . 46

14. Sample Space Used to Calculate PMC . 48

15. The Scenario Used for Developing the Aggregate
Simulation . 50

16. Aircraft RCS as a Function of Angle . 52

17. Initial and Final Waypoints . 60

18. Retrieving Ps Values Using the Rigid Cylinder Format 73

19. Retrieving Ps Values Using the Expanding Tables Format 75

20. Scenario Used in Long Term Test . 79

21. Run-Time Calls as a Function of Number of Sims 81

ix

Figure Page

22. Simulation Time as a Function of Number of Sims 82

23. Run-Time Calls as a Function of Number of Sims and
Run-Time Duration . 84

24. The Electronic Order of Battle . 88

25. An Example Mission Map . 89

26. All Missions Comprising the Notional Scenario . 90

27. Three Single Engagements . 91

28. Reduced Sample Accuracy Testing Flowchart . 93

29. Example of Each Truncation Method . 94

30. Error vs Number of Samples . 95

31. Error vs Truncation Method . 97

x

List of Tables

Table Page

1. Common and Unique Parameters that Affect the
Generation of Ps . 35

2. Types of Ps in the Mission-Level Simulation . 44

3. Overview of Testing Categories . 54

4. SAM Data Used in the Aggregate Simulation . 57

5. Final Aircraft Waypoint Data . 57

6. Aircraft Specific Parameters . 58

7. Initial Aircraft Waypoint Data . 59

8. Baseline Parameters for Average ESAMS Completion
Time Calculations . 62

9. Estimated Engagement-Level Sim Time Durations 63

10. Combination of Data Cylinder Parameters in Scenario 66

11. Increased Resolution Combination of Data Cylinder
Parameters . 67

12. Full Combination of Data Cylinder Parameters in
Scenario . 68

13. Access Efficiency Using Expanding Tables Format 76

14. Time Savings from Using Simulated Engagement-Level
Sim . 83

xi

List of Symbols

Symbol Page

Pk Probability of Kill . 13

Pd Probability of Detection . 24

Ps Probability of Survival . 24

Ncyl Number of Points Per Data Cylinder . 64

m Number of Data Cylinders in the Pre-
Computed Data Set . 64

Npre Total Number of Engagement-Level Simulation Calls 64

nr Number of Range Values . 64

nθ Number of Angle Values . 64

nz Number of Altitude Values . 64

rmax Maximum Range . 65

zmax Maximum Altitude . 65

nw,a Number of Waypoint for Aircraft, a . 72

Nsims Number of Mission-Level Simulations . 78

r Range Coordinate . 80

θ Angle Coordinate . 80

z Altitude Coordinate . 80

eacc Reduced Sample Accuracy Error . 92

Ps,full Full Sample Mission Ps . 92

Ps,trun Truncated Sample Mission Ps . 92

xii

List of Abbreviations

Abbreviation Page

DoD Department of Defense . 1

M&S Modeling and Simulation . 1

SURVIAC Survivability Vulnerability Information Analy-
sis Center . 1

DARPA Defense Advanced Research Projects Agency 6

SIMNET Simulator Network . 6

IEEE Institute of Electrical and Electronics Engineers 7

DoDD Department of Defense Directive . 9

DoE Department of Energy . 10

SAM Surface to Air Missile . 13

INSSITE Interactive Sensor Simulator for Terrain Environ-
ments . 16

IMOM Improved Many-On-Many . 16

ASTRAD Architecture and Simulation Tool for Radar Anal-
ysis and Design . 20

ALARM Advanced Low Altitude Radar Model . 22

HLA High Level Architecture . 22

JTCG/AS Joint Technical Coordinating Group on Air-
craft Survivability . 23

ALSP Aggregate Level Simulation Protocol . 23

RCS Radar Cross Section . 32

AFIT Air Force Institute of Technology . 42

AO Area of Operations . 43

EOB Electronic Order of Battle . 86

xiii

An Approach to

Large Scale Radar-Based

Modeling and Simulation

I. Introduction

1.1 Motivation

In 2007, the Department of Defense (DoD) published guidance indicating that

modeling and simulation (M&S) “is a key enabler of DoD activities” and identifying

several ways to manage the development and implementation of M&S [33]. This was

one of the first steps taken by the DoD since 2006 that shows its commitment to

improving the use and management of M&S [10], [33]. Modeling and simulation has

many useful roles throughout the DoD, including operational analysis, training, and

support of acquisition projects.

Within the DoD there are many models and simulations available to support

its varied missions. The Survivability Vulnerability Information Analysis Center

(SURVIAC) provides a way of classifying survivability models based upon their level

of detail or resolution and level of aggregation, in other words, each model is cate-

gorized by the scope of problems studied. Aggregation, which describes the amount

of different phenomena modeled by a simulation, and resolution are inversely related

when implemented in M&S: as resolution increases, aggregation decreases, and vice

versa. This categorization process yields the DoD’s hierarchy of models concept,

which is depicted in Figure 1. Therefore, a model can be categorized based on its

level of resolution.

1

Figure 1. Two representations of the hierarchy of models pyramid. The left figure is a
reproduction from [15] and the right is a reproduction from [19].

Despite the many models available, the DoD continues to need new and improved

M&S capabilities at all levels of the hierarchy of models. Often, new research ar-

eas drive the development of new models and simulations. As an example, windmill

farms, which are becoming prevalent throughout the US, are encroaching upon the

boundaries of DoD radar sites. As a result, the DoD is developing models to under-

stand the impact of windmill farms and to mitigate those impacts in the future [3].

Likewise, new acquisition programs often develop new models to explain and support

the development of new technology.

When an organization has a need for M&S that is not currently filled (i.e. the

software does not exist or does not exist at the proper level within the hierarchy

of models), it can either develop new software or modify existing software to fulfill

the need. The DoD is encouraging the “efficient development” of M&S capabilities

and encouraging the reuse of existing capabilities [10]. Sometimes, cost and schedule

constraints prohibit the development of a new software project. In this case, the only

option is to modify an existing simulation. When considering both the DoD guidance

for efficient development with reuse capabilities and the prohibitive nature of costly

new software projects, it is apparent that modifying existing simulations is a viable

method for meeting new DoD M&S needs.

2

1.2 Problem Statement

The decision to modify an existing simulation, however, raises a very important

question: Can an existing simulation provide a new software capability by simply

altering the resolution it delivers? Before an existing simulation can be modified,

the user must ensure that it is pertinent and applicable to the new requirement.

Obviously, it will not meet all the requirements of the new capability; otherwise, it

could be applied without modification to meet the need. Instead, it should closely

match the needs of the new capability need so that all required modifications will not

exceed the boundaries of the existing scenario’s assumptions and limitations. One

way that a new software need can be met by modifying an existing simulation is

to find an existing simulation that models the same phenomena, but at a different

resolution. In other words, the existing simulation lies on a different level of the

hierarchy of models pyramid and models the same phenomena as the new simulation.

According to DoD guidance, models are either “suitable or unsuitable for partic-

ular purposes” [19]. This raises another problem of modifying an existing simulation:

understanding how the simulation can be modified without negating the validity of

the results or making it unsuitable for a particular purpose. This involves understand-

ing the phenomena being modeled and the accuracy requirements of the simulation.

It also involves knowing which data are required for the new simulation and which

are not. These questions can be answered by analyzing the new simulation require-

ments, the existing simulation’s assumptions and applicability statements, and having

a thorough understanding of the phenomena that is modeled by the two simulations.

1.3 Proposed Solution

This thesis proposes the pre-computed engagement-level data cylinder method

for large-scale radar-based modeling and simulation. This method uses the high

3

fidelity probability of survival computations from an engagement-level, radar-based

simulation to accurately produce the probability of survival data used in a mission-

level simulation. This method involves two levels in the hierarchy of models pyramid

and explores a way to pull data up from the lower level to the higher level. Radar

theory is used to explain the applicability and assumptions of this method. The

amount of a priori, engagement-level data is determined by identifying pertinent

mission-level simulation parameters.

1.4 Document Organization

Chapter II reviews relevant literature related to modeling and simulation, DoD

policy and guidance, and computer and computational principles. Chapter III de-

scribes the data cylinder representation and the approach used for determining, gen-

erating, and storing the proper amount of a priori data. Contributions of the proposed

method are the Aggregate Simulation that fills the role of the mission-level simula-

tion operating on this a priori data and a method to generate, store, and access a

priori data for improving performance. This involves adeptly storing and handling the

data and restricting when and if the Aggregate Simulation can make run-time calls

to the engagement-level simulation. Chapter IV presents the results of several tests

that demonstrate the correct operation of the Aggregate Simulation and efficiency

indicators of the a priori data generation and storage method. It shows the validity

of using the pre-computed engagement-level data cylinder method for aggregating

engagement-level simulations to mission-level simulations. While this approach may

not be suitable for every engagement-level to mission-level simulation process, it is

applicable for a subset of engagement-level simulations and may provide a starting

point in the development of a process for aggregating other engagement-level simu-

lations. Chapter V explores the resulting change in accuracy incurred from reducing

4

the number of samples used by the mission-level simulation. These tests culminate

the work proposed in this thesis by deriving a notional scenario, applying the data

cylinder representation, and exploring the realistic problem of comparing accuracy

and compuational constraints. The tests and procedures in Chapter V provide a

survey of the relevent concepts and are intended to prompt further research in this

area.

5

II. Literature Review and Background Material

Chapter II presents a progression of topics that ultimately show why and how an

engagement-level simulation can be leveraged to develop a mission-level model. It

starts by giving a brief glimpse into the history of modeling and simulation and then

highlighting the current DoD policies and guidance that govern the development and

management of M&S. Then, it provides a description of how modeling and simula-

tion is categorized and segregated into groups with similar characteristics. Next is a

description of simulation principles and how they are utilized to create robust sim-

ulations. Finally, a few theoretical principles are described that are necessary when

converting a radar-based engagement-level simulation into a mission-level simulation.

2.1 Motivation from Historical Achievements and Current Guidance

2.1.1 Historical Achievements.

Throughout history, militaries have seen the importance of training their troops

using whatever means may be available to them. Wargames were used as far back

as 5000 years ago in China and sand tables and miniature replicas were used by the

Roman legions around 30 AD [30]. In the last half century, the United States military

has seen the importance of using computer simulations to assist with training and de-

cision support. But it was not until the mid 1980s (almost a decade after speculations

began to arise) that the military embraced the idea of linking computer simulations

together to enhance its ability to train troops and analyze complex problems. Prior to

the late 1980’s, simulations were distinct, unique applications, developed in isolation

with a very specific problem set and little consideration of interoperating with other

simulations. This changed in 1988 with the Defense Advanced Research Projects

Agency’s (DARPA) initiative called SIMNET [24], [30].

6

DARPA has been a leader in developing cutting edge concepts for the military

since 1958 when it was founded in response to the Soviet launch of Sputnik [34]. Over

time, the Agency paved the way for new technologies to be researched and developed

prior to being incorporated into viable systems. In 1983, DARPA saw the oppor-

tunities inherent in the world of computer simulations and realized that it could be

possible to link multiple simulations and operate them collectively toward a common

goal [24]. This was the genesis of a program called Simulator Networking (SIMNET)

and one of the first efforts by the military to implement distributed simulation [30].

SIMNET was a successful trailblazing activity for the computer simulation re-

search community. Its stated goal of allowing physically separated simulation nodes

to interact in an all inclusive simulation with human interfaces was achieved. The

results were compiled into a set of protocols called the Distributed Interactive Simu-

lation (DIS) protocols and adopted by the Institute of Electrical and Electronics En-

gineers (IEEE). It was a successful first step in linking simulations that would be

repeated and expanded upon again and again in the future [24], [30].

In the years since SIMNET and the resulting DIS protocols were developed, the

complexity of integrating simulations has continued to increase. No longer does the

programmer have only to consider how to design new simulations to interoperate

with each other. Now he or she may face integrating preexisting simulations that

were never designed to operate outside their original, exclusive scope. Issues such

as the resolution (or fidelity) of the models must be analyzed and determined to

be equivalent enough for the models to logically interact. Timing, structure and

assumptions of the models must be understood to allow the programmer to link them

into an aggregated simulation that will return logical and useful information [8].

Smith addresses the correlation of the challenges faced between interoperability

issues and working with simulations that have varying levels of resolution stating

7

that “the success of multi-resolution modeling has many of the characteristics of the

interoperability problem” [30]. He goes on to say that

it may be possible to create techniques that apply to a specific class of
models that use similar representations of the world, but it is not likely
that any one technique will suffice for all varieties of multi-resolution mod-
eling that will be attempted [30].

Indeed, in more recent work, a computer science approach to multi-resolution mod-

eling finds that “while many fields of application would benefit from a complete and

approachable solution to this problem, such solutions have proven extremely diffi-

cult,” especially when simulations of differing resolutions are “inconsistently coupled”

together [11].

2.1.2 Current DoD Policy and Guidance.

Section 2.1.1 showed that techniques aimed at solving multi-resolution problems

suffer from a lack of generality and cannot be applied to many varieties of multi-

resolution problems. This begs the question of why this research is focused on solving

the multi-resolution problem by using an engagement-level simulation to create a

mission-level simulation.

As stated in Section 1.1, when the DoD needs a new M&S tool, it can either

develop a new tool or modify an existing one. Creating a new tool means starting

a new program of design, development, and testing to produce a quality product

that meets its intended requirements. As Smith puts it, “constructing a model is

an activity subject to the universal constraints of time, money, and quality. The

model will be finished when one of these resources is expended” [30]. The concern

with creating a new model as opposed to modifying an existing model is that the

organization creating the model is more likely to run out of resources before the

8

model is fully developed and tested with the former method rather than the latter.

With so many models currently available within the DoD, upgrading an existing

model should be considered [30].

The DoD realizes the importance of M&S for its livelihood today. According to

a recent review of the FY2007 DoD budget “the military as a whole is projected

to spend well over $20 billion on all forms of simulation” during FY2007 [36]. In

recent guidance published for its modeling and simulation, acquisition, operational,

and research communities, the DoD refers to M&S as “a key enabler of DoD activi-

ties” [33]. The Department of Defense Directive (DoDD), DoDD 5000.59, released in

August 2007, shows that the DoD places a large importance on modeling and sim-

ulation since it redefined the responsibilities of several high level government offices

for M&S issues and set new policy requiring changes to how M&S is managed within

the DoD. In February of 2009, the DoD released a business plan that shows its plans

and commitment for following the guidance in DoDD 5000.59. This plan addresses

the DoD’s strategic vision and goals relating to M&S, which include “minimize du-

plication and encourage reuse of M&S capabilities,” “facilitate the cost-effective and

efficient development and use of M&S systems and capabilities,” and “employ exist-

ing models, simulation, and data to support departmental objectives” [10]. In other

words, the DoD would like to efficiently develop or reuse models and simulations

whenever possible to support its objectives.

By utilizing a preexisting, engagement-level simulation to develop a new, mission-

level simulation, this research is following the guidance set forth by the DoD in

searching for a solution to a particular M&S need. While this approach may not be

suitable for every engagement-level to mission-level simulation process, it is applicable

for a subset of engagement-level simulations and may provide a starting point in the

development of a process for aggregating other engagement-level simulations.

9

2.2 Models and Simulation in the Military

2.2.1 Hierarchy of Models.

The military uses modeling and simulation extensively throughout its many train-

ing and acquisition programs. Through this use, the types and applications of various

models have been defined and categorized into a recognizable set with distinct fea-

tures. One way that models and simulations are categorized is through the concept

of a hierarchy of models [19], [30].

The hierarchy of models is a way to define the amount of detail that a model

has and the amount of phenomena that it can effectively model. Said in a different

way, the hierarchy of models shows the level of resolution and the level of scope of

the model. Resolution is the ability of the model to accurately describe a single phe-

nomenon, whereas scope is the ability of the model to describe multiple phenomena.

Resolution and scope are inversely proportional: as one increases, typically the other

decreases. This stems from the principle that it takes a finite amount of comput-

ing power to perform a particular simulation. The more detail that this simulation

requires, the more computing power (and therefore time) is needed to perform the

simulation. A Department of Energy (DoE) report on simulations defines computers

as being “triply finite” showing that “they represent individual quantities only to a

finite precision, they keep track of only a finite number of such quantities, and they

operate at a finite rate” [25]. If the detail of a simulation is increased, without de-

creasing the scope to balance the computational requirements, then the time needed

to execute the simulation becomes extremely long due to the finite nature of com-

puters. The hierarchy of models provides a way to group simulations into discrete

categories that demonstrate their (sometimes approximate) levels of resolution and

scope [19].

Figure 1 shows two examples of hierarchy of resolution pyramids that are in use

10

today. The pyramid on the right shows the design and terms that are derived from

SURVIAC, which distributes some of the models shown on the pyramid. The models

are broken down into five specific levels, where each level has approximately the same

level of resolution and level of scope. The lowest level has the highest resolution

but the lowest scope (i.e. a highly detailed representation of a problem with narrow

scope). The highest level has the lowest resolution but the highest scope (i.e. a

very imprecise representation of a problem with large scope). The levels (in order

of decreasing resolution) are engineering, engagement, mission, campaign, and region

[19]. See [13] for a recent publication on the hierarchy of models pyramid.

An engineering-level simulation has the highest level of resolution in the hierarchy.

It is used for detailed analysis of components and systems, and is often used in the

acquisition of new programs and systems to reduce risk of undeveloped components.

A radar signal level model is an example of an engineering-level model. It describes

the radar system by identifying the specific voltages and currents used to generate

and transmit the radar pulse. The transmitted signal s (t) from this model is shown in

Equation (1). To demonstrate the radar’s ability to detect targets at the engineering-

level, the received signal (from the environment containing the target) is convolved

with the impulse response of the radar’s matched filter to produce the output of

the radar matched filter, as shown in Equation (2) [28]. This output signal, yo (t),

is further used to determine if the radar can detect the target in an environment

filled with clutter using radar equipment that generates additional noise. Calculating

the output of these equations, among other equations in detailed models, can use

significant computational resources if the simulation performs them multiple times

during the execution of the scenario.

s (t) = Arect (t/τ) cos (wct) (1)

11

yo (t) =

∫ λ

−∞

srec (λ)h (t − λ) dλ (2)

The engagement-level is the simulation of a “small number of participants and are

further defined as one-on-one, one-on-many, or many-on-many” [19]. The mission-

level of the hierarchy provides a broader scope than the engagement-level. Models

at this level are used to “simulate coordinated strike operations, tactics, and most

important, command, control, communications, and intelligence” [19].

Changing the level in the hierarchy that a model falls within means changing the

resolution and scope of that model. Davis addresses the concept of resolution and

shows how it can apply to different aspects of a simulation. For instance, he shows

how a combat unit can be modeled at higher or lower resolution based upon the items

in Figure 2 [8]. Relating Davis’ example of modeling a set of combat units, Figure

2 shows that resolution can dictate how many subunits to specifically model (e.g.

companies under battalions under brigades).

Resolution

Entity Aspect Logical-

Dependency

Process Spatial Temporal

Figure 2. A diagram showing the many aspects of resolution in modeling and simulation
[8].

The military uses models that fit on different levels of the hierarchy of models

pyramid for many reasons. Like any unit planning to use models, an organization

high in the military chain of command may implement simulations to help support

its decision making process. Due to its broad mission focus, a high level organization

12

such as the Air Force Air Combat Command makes decisions that affect a broad

scope of personnel units, equipment, and operations. Therefore the simulations that

it implements must share a broad scope to adequately address all the organizations’

stakeholders, interests, and assets to ensure the best possible decision is made. Due

to computational and schedule constraints, a broad scope simulation must balance

broad scope with lower resolution to ensure that the program executes efficiently on

the computer resources available within the timeframe allowed [8].

2.2.2 Example of an Engagement-Level Model.

According to the SURVIAC Model Guide, the Enhanced Surface to Air Missile

Simulation (ESAMS) is a “digital computer program used to model the interaction

between a single airborne target and a surface-to-air missile (SAM) air defense sys-

tem” [32]. ESAMS is an engagement-level simulation, as depicted in Figure 1. The

SAM air defense system is made up of one or more SAM sites, where each site’s

location can be defined individually by the user or be placed in a specified pattern by

ESAMS. Radar applications are modeled in the ground radar and the missile seeker

radar. This application provides the ability to test the effectiveness of various tac-

tics in given scenarios, and allows those scenarios to be very accurate due to detailed

modeling of “atmosphere, terrain, multi-path, and clutter” environmental effects [32].

Specific aircraft maneuvers or flight paths may be applied to certain scenarios to eval-

uate their effectiveness. ESAMS offers many output parameters for a given run. It

utilizes an end game calculation and can return “miss distance, closest approach,

the Probability of Kill (Pk), Pk due to blast, and Pk due to fragmentation” when

requested [32].

13

2.2.3 Large-Scale Modeling and Simulation.

Chapter III outlines a process to use an engagment-level simulation to create a

mission-level simulation since it is important to understand how different models and

simulations interact when combined. Large-scale modeling and simulation provides

a way of thinking about a given simulation (i.e. the mission-level simulation in this

example) that emphasizes the fact that it can be decomposed into several subsystems

(the engagement-level simulation is one of these subsystems).

There is no formally accepted definition of large-scale modeling and simulation

nor of the magnitude of a large simulation. One definition of a large-scale system

is a system that “can be decoupled or partitioned into a number of interconnected

subsystems or “small-scale” systems for either computational or practical reasons”

[17]. Another definition is that the system is too large for traditional methods of

design and analysis “to give reasonable solutions with reasonable computational ef-

forts” [17]. Figure 3 shows a large-scale simulation that is decomposed into several

smaller simulations. In this representation, each of the subsystems are considered

less complex than the large-scale simulation, and the large-scale simulation requires

their accurate execution. For this research, large-scale modeling and simulation is

defined as a simulation that can be decomposed into several interconnected, smaller

simulations.

Many organizations and institutions understand the need for simulations that con-

tain a large scope. For instance, in 2003 the Department of Energy commissioned a

pilot program to assess the potential benefits of an “ultra-scale simulation capability”

throughout its scientific community [25]. Large-scale simulations are used in many

applications ranging from modeling ground motion during earthquakes in highly het-

erogeneous basins to simulating “radar-aircraft-clutter interactions” [3], [20].

Large-scale simulations address problems that may require extensive memory or

14

Figure 3. A depiction of a large-scale system and how it can be decomposed into several
smaller subsystems. SS1 through SS4 represent subsystems that combine to form the
large-scale simulation. Modified from [17].

computational budgets to solve. In their analysis of the 1994 Northridge, CA earth-

quake, Kim et al. devised a simulation that consisted of 80 million hexahedral el-

ements and 100 million grid points representing an “80x80x30 km3 coverage of the

greater LA area” [20]. This simulation operates in a parallel computing environment

on “2048 processors of HP-Compaq AlphaServer Cluster” [20]. In his work on study-

ing the effects of wind turbines on radar performance, Amato explains a large-scale

simulation that includes a high resolution model of wind turbines. This model repre-

sents the blades of the turbines in rotations of thousands of degrees and can “generate

RCS values at thousands of look angles” [3]. This model creates systems of equations

of order N3 that must be solved [3]. These two examples demonstrate the complexity

of problems that may be addressed by large-scale simulations.

In Chapter IV when the engagement-level simulation is successfully aggregated to

the mission-level, it is important to understand that it may only comprise one small

subsystem of that mission-level simulation. As stated before, a mission-level simula-

15

tion has a larger scope than an engagement-level simulation; therefore it follows that

the mission-level simulation should simulate more phenomena than the engagement-

level simulation, but with less fidelity. When implementing the algorithm used to

aggregrate the engagement-level simulation, it is important to remember these prin-

ciples of large-scale simulation. It drives the interfaces between various pieces of the

code, and is the reason that object oriented programming constructs are used in the

software development. Object oriented coding is discussed in Section 2.3.1.2.

2.2.4 Examples of Large-Scale Modeling and Simulation.

Two examples of large-scale simulations that span multiple levels of the hierar-

chy of models pyramid include SAICs INSSITE and the 453rd Electronic Warfare

Squadrons IMOM.

The Interactive Sensor Simulator for Terrain Environments (INSSITE) simulation

is an in-house design tool that operates at the mission-level with certain components

that operate at the engagement- and engineering-levels. This tool is used to develop

3-D environments that include terrain and other features. These environments are

then fed into other tools for radar analysis problems. The data created in INSSITE

is fed into a tool such as RF Scene, which is used “to analyze the RF spectrum for

radar signals at the signal level” [3].

The Improved Many-On-Many (IMOM) simulation is used “to predict the effect

of electronic support and electronic attack systems” on various structures and sys-

tems, including radar sites [3]. It operates at the campaign-level with subcomponents

operating at the engagement- and engineering-levels. It is used “to determine when

radars will detect an aircraft” [3]. Since it operates at the campaign-level, it has a

large scope and simulates a large number of phenomena.

16

2.3 Computer Simulation Principles and Examples

2.3.1 Computer Simulation Principles.

This section provides the reader a baseline of general simulation principles that

are used to create robust, efficient simulations. These concepts are demonstrated in

several radar-based applications which are also presented.

2.3.1.1 General Simulation Terms.

Law and Kelton provide a very concise overview of systems, models and simula-

tions. A system is a “collection of entities ... that act and interact together toward the

accomplishment of some logical end.” A system can either be discrete, where “state

variables change instantaneously at separated points in time,” or continuous, where

“state variables change continuously with respect to time.” A simulation applies in-

puts to a model of some physical phenomenon and then exercises the model. Similar

to a system, a simulation can either be discrete or continuous. A discrete simulation

involves changing information about the state of the system only at discrete points.

A continuous simulation involves changing information about the state of the system

“continuously with respect to time.” [22]

2.3.1.2 Object Oriented Design.

Object oriented design allows software to simultaneously work with the data that

is under consideration and the processes that manipulate that data [9]. This inte-

gration of data and the processes is referred to as encapsulation and can lead to

improvements in ease of maintenance and adaptability if implemented correctly [4].

The encapsulation of one type of data is referred to as a class. An object is an instance

of a class, meaning that it has the attributes of the class but with its own unique

data. One of the most important concepts involved in object oriented systems is the

17

ability to hide information that is not needed to use a particular software module.

This is equivalent to saying that the user of a particular software module does not

need to know how the software module internally performs its functionality [9].

As an example of object oriented design, Basco and Moody present a notional ob-

ject oriented architecture to replace the non-object oriented program ALARM which

simulates the engagement-level simulation interaction between a ground based radar

system and an airborne target. It breaks the problem space into four high level classes:

the simulation controller, radar model, target model, and evnironment model. The

Radar Model is further divided into lower-level classes including detection theory,

doppler filter, MTI processing, etc. A particular radar system implemented in this

object oriented architecture is a specific combination of objects (or instances) of each

of these classes. For example, a radar system may use a pulsed-doppler transmitted

signal, which would drive the properties of the target signal class, the doppler filter

class, the MTI processing class, etc [4].

A simulation may not meet all of the requirements necessary for consideration as

object oriented, but may meet those required for an object based simulation. Ob-

ject oriented simulations must implement encapsulation, defined interfaces, polymor-

phism, and inheritance while an object based simulation must at least incorporate

encapsulation and definition of the interfaces between the data encapsulations [4].

While these particular systems do not offer the full range of benefits as that of

object oriented systems, they can still provide the advantage of easier software main-

tenance and limited upgrades. As stated in Section 2.1.2, recent guidance from the

DoD stresses the importance of creating software that is reusable and easily main-

tained. Since object based and object oriented software support these advantages, it

is used in this research when developing the mission-level simulation.

18

2.3.1.3 Efficient Simulations.

Some simulations are created to be efficient: some can be upgraded easily, some

can be applied to larger problems and data, and some have portions that can be reused

in other sets of code. An extensible system is one where the implementation takes into

account future growth. The system is created with mechanisms in place that allow

new functionality to be introduced without requiring changes to the architecture [1].

Being able to design and develop software that works as an integrated unit can be

very challenging. Adding the additional complexity of making smaller portions of

that code work correctly as individual units is even more challenging. The benefits

of defining a software architecture that contains segments of reusable code is that

new functionality can be developed more rapidly and accurately [2]. Object oriented

systems have the potential to produce reusable code, but may not always do so

efficiently [6].

For example, the ASTRAD radar simulation platform discussed in Section 2.3.2.1

uses an open architecture that allows existing functionalities to be “incorporated in

order to avoid creating a simulation from scratch” [14]. These existing functionalities

can be accessed visually using a drag and drop process with building blocks contain-

ing discrete units of functionality. Using these “blocks of functionality” implements

reusable code allowing the simulation to be used by a wider audience with a minimum

start up time. Basic architecture and radar phenomena do not have be recoded by

each new user; therefore, this code saves these users time making it very efficient [14].

2.3.1.4 Variable Resolution and Aggregation.

Paul Davis provides a description of resolution in simulation by laying out sev-

eral definitions related to the subject. Variable-resolution modeling is the process of

“building models or model families so that users can change readily the resolution at

19

which phenomena are treated....” Cross-resolution modeling is the process of “linking

existing models with different resolutions” where the emphasis is placed on models

that are pre-existing [8].

Aggregation can have different meanings in literature, which may provide some

confusion. In one case it refers to the result of linking several dissimilar simulations

into one simulation that can operate as a single unit [30], [35]. In other cases, it refers

to the lower resolution model in a pair of models that are operating at different levels

of resolution, but are modeling the same group of phenomenon [8]. This is a com-

mon approach to performing large-scale computations in electromagnetic scattering

prediction and synthetic aperture radar imaging [7], [18].

When aggregating a simulation, it is often necessary to bring data from a lower

level of the hierarchy of models pyramid to a higher level. Clever and insightful

application of “pulling data up” from one level to another is an important aspect of

aggregation. For example, both INSSITE and IMOM contain components of their

simulation that run at lower levels on the hierarchy than the main simulation. When

these components are run, the resulting data is utilized by the aggregate simulation.

2.3.2 Common Simulation Examples.

The software architecture principles addressed above are explored within this sec-

tion by reviewing several simulations, models, and prototypes that are available in

the literature. Some are radar applications and some are aggregation protocol appli-

cations.

2.3.2.1 ASTRAD.

The Architecture and Simulation Tool for Radar Analysis and Design (ASTRAD)

was developed from 2002 to 2006 as a joint venture between the French Ministry

20

of Defence and the radar community. Its user interface was designed to provide an

object structure consisting of radar libraries developed by radar professionals in an

easy-to-use graphical user interface (GUI). The GUI allows users to place processing

blocks that represent component modules (e.g. environment, target, signal processing,

etc.) into a logical connection that represents the model of a radar simulation and

its execution order. ASTRAD possesses two distinguishing capabilities that make it

a reference for the radar community. It provides an object structure that contains

a common language definition for controlling the radar processing interfaces. It also

supports multiple languages for creating the internal blocks used in the simulation

interface. Some of the languages supported include C/C++, ADA, Java, Fortran

90, and MATLAB code, making the development of new blocks extremely flexible in

ASTRAD [14].

ASTRAD is an extensible system because the GUI allows users to interconnect

blocks of functionality to create their desired model. New blocks of functionality can

be created in areas other than radar applications and can be implemented into user

models. Therefore, ASTRAD’s innovative graphical interface allows users to have

tremendous flexibility over the functionality of the models. Since ASTRAD uses an

open source approach and clearly defined interfaces, code reuse is a possibility in the

development of some new functionalities.

2.3.2.2 ARSENAL.

ARSENAL is a airborne radar simulation tool that was developed to have a robust

and scalable architecture. It incorporates an object oriented system design with

interfaces designed using n-squared charts, which are a visual, matrix representation

of functionality and input/output relationships used to develop interfaces [12]. While

the architecture of ARSENAL was being developed, use cases were implemented to

21

ensure that the many stakeholders of the system would be able to use the system as

they intended. Stakeholders include system and model designers, testers, integrators,

and operators. Thus, incorporating the information obtained from the use cases

makes the simulation very robust in the capabilities that it provides to its users. The

subsystems in this simulation are modeled as objects and are derived by applying

an intelligent demodulation approach to analyses performed on the desired radar

simulation system [26].

ARSENAL uses a generic interface between its component models. This results in

an extensible architecture that allows for future growth. If new models are compatible

with this interface, then they can be incorporated into ARSENAL, expanding its

capabilities.

2.3.2.3 Amber.

Amber is an evolutionary software project that uses several builds of software to

reach its full capability of an object oriented radar simulation. It has the advantage

of being built upon the work of several tested and validated legacy models. Amber

is based primarily on the Advanced Low Altitude Radar Model (ALARM) and is

designed to support the software architecture concept of High Level Architecture

(HLA) [4]. Amber was designed to be an evolutionary software development program

such that it would meet its requirement of object oriented architecture in discrete

phases. Thus, it made the distinction between a system that is object based.

2.3.2.4 EARCE.

In the development of several radar-related simulations used by the Department

of Defense, it became apparent that these simulations used several differing mod-

els that performed similar functions. The simulations are ALARM, ESAMS, and

22

RADGUNS and they all contained algorithms for antenna, clutter, propagation, and

terrain. Since these algorithms were already being used by multiple simulations, the

Joint Technical Coordinating Group on Aircraft Survivability (JTCG/AS) created a

common set of algorithms to be used in the simulations requiring them. This code

reuse saved schedule and cost for the sponsoring agency because it allowed the work

and development of new functionality derived from these algorithms to be less com-

plicated than starting as a completely new development [21].

2.3.2.5 ALSP.

The aggregate level simulation protocol (ALSP) is a collection of protocols used

to link a set of existing simulations into one aggregated simulation. The concept

was developed by MITRE and sponsored by DARPA beginning with its initiation

in January 1990 [35]. Initially, only two simulations were linked, but by 1994 there

were a total of seven [30; 35]. The original set of requirements derived by MITRE

were the result of a concentrated study of prior projects that dealt with simulation

aggregation, including SIMNET. Through the filter of prior works and utilization

of spiral software development, where requirements are developed during the design

process, ALSP began to approach a working, distributed interface that was focused

on linking simulations used for military training [35]. ALSP was a central component

in the research of linking and aggregating simulations in the early 1990s but soon lost

favor to the DoD’s newer project, the High Level Architecture (HLA). HLA was the

replacement for both ALSP and DIS (which derived from the SIMNET protocols).

ALSP and DIS were replaced because they were considered “very system specific”

while not supporting a “general interoperabilty solution” [30].

The ALSP is mentioned in this research because it is important to remember

that the process of combining or aggregating simulations is often system specific and

23

may not be applicable to many other systems and simulations. When considering

aggregation or linking simulations, it is important to understand the simulations

being considered before applying the techniques discussed later in this research.

2.3.2.6 Summary of Simulation Examples.

The few examples shown above represent some of the qualities that new simula-

tions should contain. EARCE and ASTRAD are prime examples of code reuse being

applied to make software development and maintenance activities more efficient by

reducing the time and cost associated with them. ARSENAL and Amber both show

object-oriented systems that take advantage of data encapsulation and inheritance.

These properties of object-oriented simulations allow debugging and software main-

tenance activites to proceed more efficiently by clearly drawing boundaries around

functionality and data within the overall simulation. The common interface utilized

by ASTRAD makes it easier for new developers to create additional functionality to

augment the extensive set of functionality already contained in this product. And

the simple user interface provided with ASTRAD makes it easy for new users to take

advantage of the simulation’s capabilities.

As the mission-level simulation and data representations are developed in Chapter

III, all of these computer simulation principles and properties are considered to ensure

that the resulting simulation is useful and efficient.

2.4 Aircraft Survivability and Detection Principles

One important foundation of this work is the connection between the probability

of detection (Pd) and the probability of survival (Ps). The mission-level simulation

exploits this connection by using an approximation to the collection of radar range

equation inputs to determine the Ps. This section shows the relationship between

24

aircraft survivability and radar detection principles.

The probability that an aircraft survives an encounter with a threat such as a SAM

site is based upon the outcome of numerous events, or phases, that occur during that

encounter. Figure 4 shows the events that occur during this interaction. The flow

of the interactions starts at the top of the chart and moves down. If the outcome

of any event leads to the left, the aircraft survives the encounter. If the outcome of

every event leads to the right, the aircraft does not survive the encounter. Each phase

in this chart is represented by a probability of occurrence. The aircraft Ps and Pk

are therefore the products of each phase’s Ps and Pk values, respectively. Note that

Pk = 1 − Ps. An engagement-level simulation that solves for aircraft survivability

follows a structure similar to this where each event in Figure 4 is represented by

detailed equations.

Figure 4. A representation showing the probability of various phases of a SAM/aircraft
interaction leading to either an aircraft survival or kill [5].

Phase 1 of Figure 4 is the conditional probability that the aircraft is detected by a

25

weapon system given that the weapon system is actively searching for a target. Once

the simulation has determined the weapon system is actively searching for targets, this

conditional probability can be described simply as the probability that the weapon

system detects the aircraft.

Skolnik presents a concise description of probability of detection and how it relates

to the probability of false alarm. The detection decision is based on the output coming

from the envelope detector circuitry in a radar [28]. The probability density function

that describes this output is given by Equation (3), where R is the envelope, A is the

amplitude of the echo signal represented as a sine wave, and Ψ0 is the mean square

value of the noise voltage [28].

pS (R) =
R

Ψ0

exp

(

−
R2 + A2

2Ψ0

)

I0

(

RA

Ψ0

)

(3)

A detection occurs whenever the signal at the output of the envelope detector is

above the detection threshold, VT . The probability that a detection occurs, Pd, is

Pd =

∫

∞

VT

pS (R) dR (4)

where VT is the detection threshold, pS (R) is the probability density function, and

R is the envelope [28].

Equations (3) and (4) show that the probability of detection, Pd, is a function of

the amplitude of the echo signal, A, coming back from the target. Skolnik indicates

that the Pd and Pfa “can be combined...to provide a single expression relating the

probability of detection Pd, probability of false alarm Pfa, and the signal-to-noise

ratio S/N” [28]. Skolnik also shows the radar range equation as a function of signal

to noise ratio, S/N, which is depicted in Equation (5).

26

R4

max =
PtGAeσ

(4π)2 kT0BFn (S/N)min

(5)

The simplicity of Equation (5) allows fast computation of radar performance and

the different levels in the hierarchy of models provide trade-offs in computation time

and accuracy. Since a large-scale simulation may address several phenomena, it is

important to find the simplest equations and models that meet the accuracy require-

ments of the simulation.

Equations (3), (4), and (5) all correspond to node 1 in Figure 4. They give insight

into how basic scenario parameters (such as antenna gain, G, or the target radar cross

section, σ) affect the probability that the aircraft is detected during the encounter.

During an engagement-level simulation, each of the nodes in Figure 4 are evaluated

to determine the aircraft’s Ps in that engagement.

2.5 Computational Lessons Learned

Part of this research involves generating large amounts of data at the engagement-

level in the hierarchy. The mission-level simulation then searches within this data and

performs interpolations using segments of the data. When designing the geometry of

the data storage method and the interpolation algorithm, it is important to include

computational techniques that can efficiently perform these tasks. This research uses

the computing methods often used in finite element methods to perform these tasks.

According to Huebner, et al. “the finite element method is a numerical analy-

sis technique for obtaining approximate solutions to a wide variety of engineering

problems” [16]. Said in a different way the finite element method allows a complex

problem to be replaced by a simpler one [27]. When closed form solutions are not

27

available or practical, finite element analysis provides a method “to obtain approxi-

mate numerical solutions” for a given differential equation [16]. It is applied in areas

of engineering such as “heat conduction, fluid dynamics, seepage flow, and electric

and magnetic fields” [27]. In more recent literature, finite element analysis has been

applied to computing Green’s functions for interferometric synthetic aperture radar

data, verifying functionality and reliability in advanced micro electronics technology,

and determining radar measurement deviations within industrial applications [7], [29],

and [31].

The finite element method is the application of a certain pattern of steps to a

given problem. The problem space is discretized into a finite set of points (called

nodes) for which a field variable is defined and computed. These nodes segregate

3-D space into smaller 3-D regions called elements, which are bounded by the nodes.

Since the field variable is only calculated at the nodes, interpolation functions are

defined for values within the elements. The remainder of the finite element process

involves solving these interpolation functions within the 3-D problem space. This is

the process, with slight variations, followed in [16], [18], and [27].

28

III. A Method to Adapt an Engagement-Level Simulation to

a Mission-Level Simulation

This chapter describes the use of an engagement-level simulation to design, de-

velop and test a mission-level simulation for meeting a new software need using

the pre-computed engagement-level data cylinder method as mentioned in Chap-

ter I. Judicious data representation helps identify and isolate the parameters of the

engagement-level simulation that are also relevant to the mission-level simulation,

thereby reducing the complexity of the mission-level simulation while preserving much

of the engagement-level fidelity. This is the balance sought in large-scale simulation:

accuracy versus efficiency. Based on this collection of pertinent, mission-level simula-

tion parameters, a mission-level simulation called the Aggregate Simulation is built to

demonstrate the approach. This simulation is used in conjunction with a relevant sce-

nario to test both the capabilities of the Aggregate Simulation and the feasibility and

efficiency of two alternate approaches for meeting the pre-computed engagement-level

data cylinder method. The scenario and test cases are described last.

3.1 Designing a Mission-Level Data Representation

The first step required to represent engagement-level data at the mission-level is

to decide which engagement-level data to use. This will often be based on the needs

of the new mission-level simulation. For instance, if the mission-level simulation

involves the probability that an aircraft will survive an encounter with a particular

threat, then the data needed for this simulation should be the aircraft’s probability

of survival (Ps) as obtained from an engagement-level simulation. For the purpose

of defining and developing the process of collecting engagement-level simulation data

in this thesis, Ps is chosen because there are engagement-level simulations available

29

(such as ESAMS) that compute Ps in a way to incorporate Ps in a mission-level

simulation.

Several parameters are needed to use engagement-level Ps data when calculat-

ing Ps at the mission-level. This set of parameters is derived from the radar range

equation in Equation (5) and the relationship between Ps and Pd. These parametes

contain the relative distance and orientation between the aircraft and SAM given by

distance, altitude and angle. The parameters also include the type of the SAM site,

the type and speed of the aircraft, and whether the aircraft is performing an evasive

manuever or utilizing a threat countermeasure.

Before explaining the method of representing the engagement-level Ps data, it is

important to understand how that data is used. As an aircraft flies along a flight

path during an engagement, it may face threats, such as SAM sites, that threaten its

survival. The calculation of the Ps for any point along this flight path is determined at

the engagement-level. As the aircraft continues to fly along the flight path, its distance

and orientation to the threat change, requiring new runs of the engagement-level

simulation. This will continue for every point in the aircraft’s flight path, requiring

many runs of the engagement-level simulation. Obviously, the simulation does not

generate a Ps value for every point along a continuously-defined flight path. Therefore,

the flight path is discretized into waypoints. In addition, the regions between the

aircraft and the SAM site surrounding the flight path will be partitioned into discrete

regions. The engagement-level simulation uses these localized regions to compute the

Ps data. Figure 5 shows the process of transforming a continuous flight path into a

set of discrete waypoints (shown as squares along the flight path) and regions (shown

as rings around the SAM site).

The notion of generating pre-computed data means that the preference is to com-

pute data that is flexible to meet the specifications of a scenario such as that shown

30

Figure 5. A depiction of a continuous flight path that has been quantized into discrete
waypoints and distances from a SAM site. The blue squares represent the discrete
waypoints and the concentric circles represent the discrete distances from the SAM
site.

in Figure 5 but without having to enter each particular scenario into the engagement-

level simulation. Therefore, the different configurations of what may be encountered

in a scenario must be simulated, analyzed and prepared as pre-computed data. As

stated before, the set of discrete distances is one aspect that must be addressed in a

scenario. Other aspects include the orientation of the aircraft to the SAM site, the

altitude of the SAM site compared with the aircraft, and any maneuver or counter-

measure that the aircraft may be performing to reduce the effectiveness of the SAM

site. These various configurations, when derived from a given scenario, combine to

form the simulation parameters, but the question remains: How does one combine

the resulting data into an efficient and meaningful structure? The approach taken in

this effort is the data cylinder.

A data cylinder is a graphical representation of Ps data that is calculated between

a single SAM site and a single aircraft. In addition to the aircraft and SAM types, it

is a function of the geometry surrounding the possible placements of these two entities

with respect to each other, and the maneuvers and countermeasures employed by the

31

Figure 6. An illustration of how an aircraft can be at a given distance away from a
SAM site, yet have differing orientations to that SAM site. These aspects must be
accounted for when calculating the Ps data in ESAMS. The SAM is located at the dot
at the origin of the concentric circles in each plot.

aircraft during the engagement.

Continuing the scenario shown in Figure 5, the aircraft moves from one waypoint

to the next resulting in a new direction of travel, distance, and orientation to the

SAM sites. These changes are illustrated in Figure 6. Orientation affects how the

threat radar senses the aircraft because radar cross section (RCS) changes accordingly.

Although Figure 6 shows two-dimensional cases, the relative altitude also affects the

orientation. Hence, range, azimuthal angle, and height are used to construct the

cylindrical coordinate system of a data cylinder.

While the data cylinder contains the aspect angle, altitude, and distance between

the aircraft and SAM site, it is important to note that the aircraft is the central

reference point of this data. In other words, the SAM’s location (altitude, heading

and distance) is measured relative to the aircraft’s location. Figure 7 shows the

location of the two SAM sites from Figure 6 with the aircraft as the central reference

point. This layout will be used to explain the structure of the data cylinder.

Figure 8 shows a graphical representation of a data cylinder with the aircraft

32

Figure 7. Different orientations between the aircraft and the SAM site, shown with
the aircraft as the central reference point. Having the aircraft as the central reference
point is essential in the development of the data cylinder.

shown as the central reference point and a SAM site shown at some location inside

the cylinder. Figure 8 also shows the components of the data cylinder identified

individually. It is composed of several parallel discs that are arranged one on top of the

other. These parallel discs represent the discrete altitude offsets between the aircraft

and the SAM site. Each disc contains the relative headings and distances between

the aircraft and a set of SAM sites. The heading angle is calculated as the arc moving

counter-clockwise from the aircraft’s heading to the SAM’s location. The distance

information that is stored within the data cylinder is the radial distance between

the aircraft and SAM because height is already reflected by each disc. Explained

differently, it is the ground distance between the aircraft and the SAM site.

The size of the cylinder only depends on the relative altitude, distance, and an-

gle between the aircraft and the SAM site, but are also unique for combinations of

aircraft maneuvers and/or countermeasures. Hence, many data cylinders must be

generated according to the type of aircraft and the type of SAM site in the scenario.

A change in aircraft or SAM requires a new data cylinder. Figure 9 shows various

33

Figure 8. A notional view of a data cylinder showing altitude, angle, and distance com-
ponents. This figure also shows one disk (on the right) with the value of Ps highlighted
in shades of red and yellow for each combination of altitude, angle, and distance for
one altitude.

configurations of the data cylinder for a given aircraft and SAM pair where each

countermeasure/maneuver combination is simulated for the same range, angle, and

altitude coordinates.

The parameters that form a data cylinder are divided into two groups: common

and unique parameters. Each data cylinder shares the same common parameters,

which include the set of aspect angles, distances and altitudes. Each data cylinder

has its own combination of the unique parameters, which include the type of SAM site,

type and speed of the aircraft, and any aircraft maneuver or countermeasure being

employed. Table 1 shows a list of the common and unique data cylinder parameters.

Figure 9 shows the various configurations of the data cylinder for a given aircraft and

SAM pair using a specified set of altitudes, distances, and angles.

One important note about generating data using this method: Each data cylinder

is created with a set number of altitudes, aspect angles, and distances and with

maximum allowed altitude and distance values. These limitations are necessary to

determine the number of required engagement-level simulation runs and to ensure

34

Table 1. Common and Unique Parameters that Affect the Generation of Ps

Common Unique

Number of Ranges (nr) Aircraft Type
Number of Angles (nθ) SAM Type
Number of Altitudes (nz) Aircraft Maneuver
Max Range (rmax) Aircraft Countermeasure
Max Altitude (zmax) Aircraft Speed

Figure 9. The different combinations of countermeasures that are a parameter of the
data cylinder. Each cylinder contains the same sets of altitude offsets, heading angle
offsets, and distance offsets, but contains only one of the countermeasure combinations
shown here.

35

that consistent data is present when transitioning between different cylinders during

an engagement. Consistent data in this case refers to data that is generated for

similar input parameters with small changes. An example of consistent data would

be having pre-computed Ps values available to the mission-level simulation for an

aircraft at a relative location while not using an evasive maneuver and while using an

evasive manuever. If the mission-level simulation needs to change from no manuever

to maneuver, then the Ps data is available without having to run the engagement-level

simulation.

Since this method rigorously defines the number of points and the maximum

allowed points, it constricts the size of the data cylinder upon its creation. It also

requires that the engagement-level simulation be run for every point in each cylinder

before the mission-level simulation can be used. If Ps values are needed that fall

outside of the limitations of the cylinder, then they must be obtained through run-

time calls to the engagement-level simulation each time they are needed (and then

discarded) or completely new data cylinders with the necessary limitations must be

generated. This method generates all of the data cylinder Ps values before the mission-

level simulation runs; it does not allow storage of Ps values after the creation of the

data cylinders.

3.2 Removing the Limitations of the Data Cylinder

Section 3.1 showed one way to think about how engagement-level data can be gen-

erated and stored to facilitate using it in a mission-level simulation. While being very

easy to visualize, this method greatly inhibits the flexibility of the simulation to adapt

to the scenario being investigated. For instance, if the scenario requires the aircraft to

move to a distance greater than the maximum distance of generated Ps data, the only

options are to stop execution and wait for an entire new data cylinder (with a larger

36

maximum radius) to be computed (for each pertinent combination of cylinder param-

eters) or to perform run-time calls to the engagement simulation without saving the

resultant Ps. The process of performing run-time calls and pulling the data up from

the engagement-level simulation to the mission-level simulation echoes the process

(described in Section 2.3.1.4) that INSSITE and IMOM utilize when calling certain

sub-components that operate at the engagement- and engineering-levels. Even if the

aircraft and SAM are aligned so that the same point outside the original cylinder is

needed twice, the Ps will still have to be computed using a run-time call both times

since this method does not allow storage of Ps values at run-time. This method of

storing the computed Ps data is, therefore, inflexible and can lead to inefficiencies

in the computation of the mission-level simulation. The method of generating and

storing the Ps data presented in Section 3.1 is termed the rigid cylinder format due

to its lack of flexibility when new data is needed. This leads to the development of

the expanding tables format to improve or eliminate these inefficiencies.

The expanding tables format allows a data cylinder that is generated similar to

the rigid cylinder format to save Ps values for new range, altitude, and angle points,

as needed, using run-time calls to the engagement-level simulation. Subsequent to

this process, the newly created Ps value will be available to the mission-level simu-

lation should it be needed again. The manner in which this works is best described

by looking at data structures used in the physics-level simulations where very large

matrix operations are performed.

The expanding tables format implements an approach similar to the data storage

used in the finite element method. Initially, the a priori data is created similar to the

rigid cylinders format. As the data is created, it is sorted into three tables labeled

Nodes, Elements and Configuration. The Nodes and Elements tables combine to form

the set of common parameters of the rigid cylinder format data cylinders (i.e. the

37

Figure 10. A depiction of one element in the data representation.

locations of the points) without the constraint of being fixed to only a predefined set

of points. The Nodes table contains four pieces of information: a node ID (similar

to a unique ID in a database table) that is unique for every entry in the table, and

the range, altitude, and angle associated with that particular node. If a point in 3-D

space is not located within the Nodes table, it does not have any Ps values generated

for it. This is true despite the fact that the Ps values are not stored in this table at all.

The Elements table partitions a subset of 3-D space into smaller 3-D sections (called

elements) where interpolation is a valid method of computing Ps. The interpolation

is performed using the location and Ps value of each of eight nodes that form the

boundaries of the element. Each row in the Elements table contains an element ID

(again similar to the primary key in a database table) that is unique for each element

in the table, the minimum and maximum boundaries of range, altitude and angle and

the node IDs of all eight nodes that bound the element. Since the design of the data

cylinders is based upon a cylindrical coordinate system, each element is a piece of a

cylinder, as shown in Figure 10.

Figure 11 shows a very simple example of each table used in the expanding tables

format. In this example, eight unique nodes are stored into the Nodes table. The

nodes are chosen so that they represent the eight vertices of one element. This

38

element is stored in the Elements table and linked (via n1 through n8) to the Node

ID of each of the nodes that bound it. Finally, each of the eight nodes are paired

with one combination of unique data cylinder parameters. These parameters are

given by integers in the columns AC Type, SAM Type, Manuever, Countermeasure,

and Speed. This creates eight engagement-level runs which are then stored in the

Configuration table along with their associated Ps value.

The Elements table can be designed to contain only a certain set of elements and to

never increase or it can be designed to include new elements as new nodes are created.

Due to time constraints that prohibit developing the complicated algorithm needed

to create new elements, the Elements table will not be expanded during run-time.

Expanding the Elements table is left for future work in this area. The Configuration

table contains the Ps values associated with each node in the Nodes table and with

the unique parameters that comprise the scenario being simulated. The reason why

it is necessary to have the Ps value stored in a separate table from the Nodes table is

because it is possible to have multiple Ps values for one point (or node) in 3-D space.

For example, it is possible for an aircraft located at a given range, altitude and angle

that is flying with a straight and level flight profile (i.e. not using a maneuver) to

have a much different Ps than an aircraft at the same location that is performing an

evasive maneuver and using chaff and jamming. The Configuration table stores a Ps

value for a node for a specific combination of unique parameters. Any Ps value stored

in the Configuration table must have a corresponding node in the Nodes table.

The expanding tables format reduces simulation time by storing Ps values that

are generated during the execution of the mission-level simulation. These run-time

values are in addition to the data store prior to the execution of the mission-level

simulation. By storing these run-time values, the expanding tables format provides

significant time savings over the rigid cylinder format, as shown in Chapter IV.

39

Figure 11. An example used to illustrate how data is saved into the three tables when
using the expanding tables format. Note that in the Elements table, the n1 through n8

columns each represent a vertex of an element. The values in the column determine
which node in the Nodes table corresponds to that vertice.

40

3.3 Utilizing the Data in a Mission-Level Simulation

3.3.1 General Design.

As was shown previously, a mission-level simulation is situated at the middle level

of the hierarchy of models pyramid. It has a broader scope than an engagement-level

simulation, which only simulates a one on one engagement between the aircraft and

a specific class of threats, like SAMs. The mission-level simulation would simulate

many different types of one on one engagements, resulting in a one on many or many

on many engagement as in IMOM, discussed in Section 2.2.4. These engagements are

a small part of the overall requirements and applications of a mission-level simulation.

Creating a mission-level model requires considering many aspects of a mission includ-

ing “coordinated strike operations, tactics, and most important, command, control,

communications, and intelligence” [19]. This research does not seek to develop a com-

plete, fully tested and comprehensive mission-level simulation that addresses every

one of the parameters in detail. Instead, it seeks to create the necessary framework

of a mission-level simulation so that one type of one on one engagement can be ab-

stracted and operated at the mission-level. It also seeks to create this mission-level

framework so that it is extensible and adaptable.

To facilitate the broad scope of a mission-level simulation and to ensure that other

functionality can be added to this mission-level framework, it is constructed using an

object based approach. The object based approach allows the code to encapsulate

data and functionality within particular modules and provide a consistent interface to

that data and functionality that other modules or ‘objects’ can access. This approach

also allows the simulation to be modified easily to support future changes, making

the code reusable and compliant with DoDD 5000.59.

41

3.3.2 Programming Application Selection.

The one-on-one engagement between an aircraft and SAM site as simulated in

ESAMS serves as the base level for the Aggregate Simulation. ESAMS reports Ps

as input into the mission-level simulation. However, since the data that is produced

by ESAMS is classified at the Secret level, the Ps output from ESAMS will not be

reported in this thesis. The emphasis is on a suitable architecture involving DoD

standard models. Hence, any Ps value will be simulated as a random number using a

uniform distribution over [0, 1] and the results of ESAMS are limited to data structure,

format, and computational cost. No correlation should be drawn between the random

numbers generated for Ps in this research, and actual values of Ps from ESAMS.

ESAMS is an executable file generated from Fortran and executed from the com-

mand prompt by specifying the executable name with associated input and output

files that constrict the run time execution. Since ESAMS adheres to a clear interface

(i.e. the input/output files) and supports command line execution, the choice for

developing the Aggregate Simulation was based upon the need for data manipulation

and analysis, expertise of the author, applicability to future work, and availability

within the computing facility at the Air Force Institute of Technology (AFIT). For

the process of aggregating ESAMS, it is treated as a complete, compiled application

and any interaction with it will adhere to the command line execution using input and

output files, and batch processing. Since MATLAB meets each of the aforementioned

criteria for developing the Aggregate Simulation, it was chosen for the development

environment.

3.3.3 Aircraft and SAM Interactions.

The Aggregate Simulation is designed to simulate one or more aircraft flying

through an Area of Operations (AO) that includes one or more SAM sites. Each

42

aircraft’s flight path is represented by a set of discrete waypoints that define a location

for the aircraft as it traverses the AO. Each aircraft’s set of waypoints may be different,

and the set of waypoints may change during the simulation in response to any SAM

site that presents a low probability of survival to the aircraft. The simulation is

also designed to collect data from the aircraft and SAMs at each waypoint. This data

represents the interaction between the aircraft and the SAMs detailing the probability

of survival of the aircraft at that location for each SAM site.

The goal of this Aggregate Simulation is to identify an aircraft’s probability of

survival (Ps) across its flight path (i.e. the entire set of waypoints in the simulation)

and to identify the differences as the aircraft changes its response to the probability

of survival data generated from its interaction with the SAM sites. For example,

the simulation can be run twice with each run exhibiting different aircraft reactions

to the Ps data. The first run could follow the initial flight plan (i.e. the waypoints

created before the aircraft started moving among the waypoints) and not deviate

from it regardless of the Ps data. This first run would provide a baseline of data to

compare with the second run. The second run would then implement a particular

countermeasure (e.g. chaff, a maneuver, or both) if the Ps from any SAM was below

a predefined threshold.

3.3.4 Calculating the Probability of Survival.

During the mission-level simulation, there are three Ps values as the aircraft tra-

verses its flight path. While at waypoint n, there is the probability that the aircraft

survives a single SAM site (i.e. SAM a), which is given by Pn,a. Since the scenario

may contain multiple SAM sites (i.e. a > 1), there is a probability that the aircraft

survives all SAM sites, while at waypoint n. This probability is denoted by Pn. Last,

there is the probability that the aircraft survives all A SAM sites at each of the N

43

Table 2. Types of Ps in the Mission-Level Simulation

Ps Type Description

Pn,a Probability that the Aircraft survives SAM a at waypoint n
Pn Probability that the Aircraft survives all SAMs at waypoint n
PMC Probability that the Aircraft survives all SAMs at all waypoints

waypoints along its flight path. This is the probability that the aircraft completes its

mission, given by PMC . Table 2 shows these three types of Ps.

Figure 12 shows an example of a scenario that is simulated by the Aggregate Sim-

ulation to determine PMC . This scenario contains three SAM sites and ten waypoints.

It is used to illustrate the probabilities in Table 2. Figure 12 also shows the sample

space of SAM a = 1 and waypoint n = 1. The sample space is a method of relating

all possible outcomes from an experiment [23]. In any aircraft/SAM engagement, the

Aggregate Simulation assumes only two possible outcomes: the aircraft survives (S)

or the aircraft is killed (K). It does not track aircraft damage as a separate state.

The outcome that the aircraft survives SAM a at waypoint n is given by Sn,a. The

outcome that the aircraft is killed by SAM a at waypoint n is given by Kn,a.

The Ps data stored in the data cylinders is used to determine Pn,a. The mission-

level simulation determines the relative orientation and distance between the aircraft

and SAM, along with the other data cylinder parameters, and finds the associated

Ps value in the data cylinders. If the value is not available in the data cylinders, the

engagement-level simulation is run to determine Pn,a.

Calculating the probability that the aircraft survives all SAM sites at waypoint n

requires combining A probability equations together. Figure 13 shows this relation-

ship. There are A = 3 SAM sites in this illustration, which each have a distinct Pn,a.

The goal in this step is to determine Pn, given each of the A values of Pn,a. While the

aircraft is at waypoint n, it is assumed that the interaction between the aircraft and

44

Figure 12. This image shows a scenario that is used to develop the probabilities in
Table 2. It also shows the sample space, or set of possible outcomes, when the aircraft
engages SAM a = 1 at waypoint 1.

45

Figure 13. This image shows the sample space of the aircraft engaging all A = 3 SAM
sites at waypoint n = 1.

one SAM site is independent of the interaction between the aircraft and any other

SAM site. Using independence, Pn can be calculated as the product of A SAM sites

by

Pn =
A

∏

a=1

Pn,a (6)

where n is the waypoint, a is the SAM site, and A is the total number of SAM sites.

Refer to [23] for more information on independent events. The Aggregate Simulation

only needs to multiply A values together to calculate the probability that the aircraft

survives at waypoint n.

Calculating the probability that the aircraft survives the mission, PMC , requires

combining the Pn values from each of the N waypoints. Unlike calculating Pn, how-

ever, the result at each of the N waypoints cannot be assumed independent of the

other waypoints. A development of the PMC , therefore, must utilize probability the-

ory without utilizing the simplifying assumption of independence.

Figure 14 shows two possible examples of the sample space of the mission. The

sample space contains information about each of the N waypoints’ possible outcomes,

46

while only n = 1, 2, N are illustrated for clarity. SMC is the outcome where the aircraft

survives all N waypoints. This is the intersection of the survival events at each of the

N waypoints, represented as the blue area in Figure 14. In other words, the aircraft

only survives the mission if it survives each of the waypoints. This outcome is given

as

SMC = S1

⋂

S2

⋂

· · ·
⋂

SN (7)

where SMC is the event that the aircraft survives the mission, and S1 through SN are

the events that the aircraft survives waypoints 1 through N respectively.

The probability that the aircraft survives the mission is the intersection of the

survival events at each waypoint

PMC = P
[

S1

⋂

S2

⋂

· · ·
⋂

SN−1

⋂

SN

]

(8)

This equation requires knowledge of the conditional probabilities between each way-

point.

Simplifying Equation (8) yields the conditional probability statement

PMC = P
[

S1

⋂

S2

⋂

· · ·
⋂

SN−1|SN

]

P [SN] (9)

where P [SN] = PN is the probability that the aircraft survives waypoint N . P [SN]

is calculated using Equation (6).

Calculating P [S1

⋂

S2

⋂

· · ·
⋂

SN−1|SN], however, is not straightforward. Under-

standing the conditional probabilities between the waypoints requires a higher level

of resolution than the mission-level simulation is designed to simulate. Therefore, this

conditional probability is approximated as

P
[

S1

⋂

S2

⋂

· · ·
⋂

SN−1|SN

]

≈

∑N−1

n=1
Pn

N − 1
(10)

47

Figure 14. This image shows the sample space of the aircraft’s probability of mission
success, which includes all n = N waypoints. Only waypoints n = 1, 2, N are shown,
however, for clarity.

48

It is important to clearly state that the Aggregate Simulation assumes that the condi-

tional probability on the left side of Equation 10 can be approximated by the average

on the right side. This averaging process can mask certain aspects about the scenario.

For instance, if the majority of Pn values are close to one, and a single Pn is equal to

zero, averaging these numbers will return a number that is greater than zero. Future

research should address the applicability of using this averaging process and seek to

find ways to better represent scenarios that contain Pn values close to zero.

Combining Equations 11 and 10, the algorithm for determing the mission Ps value

becomes

PMC ≈

∑N−1

n=1
Pn

N − 1
P [SN] (11)

The Aggregate Simulation uses this algorithm to compute PMC .

3.4 Developing a Scenario and Tests to Evaluate the Mission-Level Sim-

ulation and Data Cylinder Efficiency

3.4.1 The Scenario.

To assist in creating and testing the Aggregate Simulation, a scenario has been

developed that contains a single, heavy aircraft and numerous long range SAM sites.

This scenario will perform the basis of designing, developing and utilizing the Ag-

gregate Simulation and estimating the type and amount of data needed to properly

execute it.

Figure 15 shows the scenario that will be used for this research. This scenario

involves three SAM sites placed along a horizontal line separated by equal distances.

The aircraft will begin within the rings of the SAM sites and will move from the

starting location just below the rightmost SAM site and will move to the left of the

map to the end location just below the leftmost SAM site.

49

Figure 15. This is a graphical depiction of the scenario that will be used to develop the
Aggregate Simulation. The illustration shows two ways that the aircraft may respond
to the SAM sites: the straight-and-level baseline case (left image) and an alternate
case (right image).

The scenario provides a way to quantify the likelihood that the aircraft will survive

as it moves through the scene from the starting location to the end location. This

quantification process begins with a case where the aircraft simply moves from the

starting location to the ending location along a straight path without responding to

any threats met along the way. Moving along a straight path and ignoring threats is

not very realistic, however, so additional cases will provide a response to the threats

and may alter the path from the starting location to the end location. Comparing

these cases to each other and to the baseline will show which one is best suited to

that scenario’s configuration.

The goal of the research, however, is not to simply queue up an existing simulation

to solve an existing problem. Instead, this research seeks to utilize the hierarchy

of models paradigm to simulate the above scenario in an intelligent and efficient

manner drawing upon proven resources like the ESAMS software. Since ESAMS is

an engagement-level simulation, it may require multiple runs to adequately support

the scenario and requisite case comparisons stated above. During simulation of the

scenario, multiple threats may be presented to the aircraft that require a response

to be generated to counter them. Each response may employ a different aircraft

50

maneuver to counter the threat and would require that ESAMS be run again once

that specified maneuver has been chosen. ESAMS is a computationally expensive

program that needs a significant amount of time to execute to completion. This

research seeks a way to utilize ESAMS and reduce this computational burden during

the scenario execution.

One solution to the computational burden is to move one step up the hierarchy

of models pyramid during the majority of the simulation. As one moves up the

pyramid, the simulations are able to tackle a larger set of problems (i.e. broader

scope), but those simulations tackle each problem with less resolution and therefore

less computational burden. This suggests that ESAMS will not need to be run for

every flight path and every subsequent maneuver or reaction that is generated. Indeed

this is the goal: to greatly reduce, if not completely eliminate, the number of run-

time calls to ESAMS during the simulation of the scenario thus reducing the time

to complete the simulation. The engagement-level model execution of ESAMS will

be approximated in each one of those cases using pre-computed data generated from

ESAMS. Most of the data will be generated prior to the run-time execution of the

scenario, allowing the scenario to be simulated much more efficiently. Moving upward

on the hierarchy of models pyramid to simulate the scenario will reduce the accuracy

of the results to some degree, so care must be given to understand where the loss in

accuracy will come from and when it may be unacceptable. In those cases, a run-time

call to ESAMS could be used to improve the output of the simulation back up to the

minimum acceptable level.

One instance of when a run-time call to ESAMS may be necessary is when the

RCS of the aircraft as seen by the SAM site from a given location is dissimilar enough

from adjacent locations that the pre-compiled data may no longer be representative

of the scene. Take Figure 16 as an example. If the pre-compiled data for this scenario

51

Figure 16. A depiction of an aircraft’s RCS as a function of the viewing angle. This
data is generalized from real-world backscatter data measured from a B-26 as presented
in Skolnik [28].

was valid for RCS values in the range of 10 to 20 dB, then this data will not be

valid for angles around +/- 10◦ and +/- 170◦ where the RCS is much higher. If the

simulation returns a situation where these angle values are used, then a run-time call

to ESAMS would be necessary to check the validity of the data.

Using a mission-level model instead of multiple, comprehensive engagement-level

simulation executions to simulate the scenario will require a few things. The first is

creating the software framework that allows the simulation to operate at the mission-

level in the hierarchy of models pyramid. This framework is the Aggregate Simulation

and it must also know at what points during the simulation that the results of the

the mission-level execution may not be sufficiently accurate so that it can call down

to a finer resolution model (i.e. the engagement-level simulation) during the run-

52

time execution. The second thing needed will be the right pre-computed data set for

the current scenario. This can be a balancing act: not having enough pre-computed

data will delay the run-time execution of the scenario, having too much pre-computed

data will delay the start of the run-time execution. Once the data has been generated,

either during the scenario simulation or prior to run-time, it must be saved and made

accessible for future use. In other words, only generate the engagement-level data

once; store and retrieve it for subsequent use.

3.4.2 Tests.

To test that the Aggregate Simulation and the engagement-level to mission-level

data representations work as planned, several tests are developed. These tests are di-

vided into two main groups: tests that investigate the functionality of the Aggregate

Simulation and tests that investigate the validity and efficiency of the data represen-

tations. The function, expected results, and any analysis will be presented in detail

in Chapter IV prior to their respective results. Chapter V presents a test that shows

the relationship between the number of samples used in the mission-level simulation

and the resulting accuracy. Each testing category is discussed below and is briefly

summarized in Table 3.

3.4.2.1 Aggregate Simulation Functional Testing.

The functional tests of the Aggregate Simulation are performed first to demon-

strate that the simulation can support the input data and aircraft to SAM interac-

tions. These tests show that the basic components of the simulation are included,

such as modeling both aircraft and SAM sites, developing flight paths, and returning

Ps data for each waypoint along the flight path. Also, when allowed using input

variables, these tests show that the simulation performs maneuvers and/or counter-

53

Table 3. Overview of Testing Categories

Category Description

Functional Shows that the Aggregate Simulation operates as a mission-
Demonstration level simulation and contains the functionality needed to

Testing support the data representation testing

Data Compares the efficiencies between the two data cylinder
Representation formats, with emphasis on time required to generate data and

Testing to execute the mission simulations

Reduced Sample Shows the change in accuracy resulting from using less
Accuracy samples when identifying the aircraft’s flight path during
Testing a mission

measures. Successful completion criteria for these tests include data generated from

the simulation (i.e. waypoint data, Ps data, and decisions to perform a maneuver/-

countermeasure) and the respective analysis to decide if the data is nominal (i.e. a

particular maneuver was chosen only if it was allowed and the Ps was lower than

the Ps threshold set in the input data). Successful completion of these tests is nec-

essary because the data representation tests in Section 3.4.2.2 are built upon the

mission-level simulation performing these tasks.

3.4.2.2 Data Representation Testing.

This set of tests demonstrate the efficiency of the two data representation formats:

rigid cylinders and expanding tables. These tests determine the time to perform

certain operations, including generating the Ps data, storing the data, and searching

the data. For each test, the two data representation format results are compared

and the most efficient format is deduced. Successful completion criteria for the data

representation tests are similar to the Aggregate Simulation functional tests.

54

3.4.2.3 Reduced Sample Accuracy Testing.

Chapter V explores the resulting change in accuracy incurred from reducing the

number of samples used by the mission-level simulation. These tests culminate the

work proposed in this thesis by deriving a notional scenario, applying the data cylin-

der representation, and exploring the realistic problem of comparing accuracy and

compuational constraints. The notional scenario is divided into four missions which

are each composed of three aircraft to SAM engagements. The tests are run using a

specific number of samples per second. When the tests complete, the Ps from the full

set of data is compared to the Ps from a truncated set (i.e. a set that contains less

samples) and an error value is determined. This testing is presented as a brief survey

and is intended to prompt further research in this area.

55

IV. Evaluating the Performance of the Mission-Level

Simulation and Data Cylinder Formats

4.1 Aggregate Simulation Functional Demonstrations

The tests in this section demonstrate that the Aggregate Simulation functions

as a mission-level simulation and contains the functionality to simulate engagements

between SAM sites and an aircraft. The tests show that the simulation can store

and retrieve aircraft and SAM data, generate a set of waypoints that represent the

aircraft’s flight path, and relate the aircraft, SAM, and waypoint data together into

a mission-level simulation. As mentioned in Section 3.4.2.1, these tests show that the

Aggregate Simulation has the capabilities needed to support the data representation

tests, which are described in Section 4.2.

4.1.1 Generate Aircraft and SAM Representations.

To ensure that the Aggregate Simulation can perform the operations needed to

store and lookup certain Ps values in Section 4.2, it stores information about the

aircraft and SAM sites that it simulates. For SAM sites, the stored information

includes the type of SAM for each site, the location, whether it is known as a priori

knowledge to the aircraft, and the maximum effective ground range of the SAM. Table

4 shows the data associated with three SAM sites that are arranged according to the

scenario shown in Figure 15. Note that the type of SAM site used in the scenario is

identified as SAMlng. This is a long range SAM with generic parameters that is used

for testing purposes. It is not based on a real system.

The stored information also includes the type of aircraft, along with the speed,

location, and heading for every waypoint along the aircraft’s flight path. For simplic-

ity, the only aircraft velocity parameters stored in this simulation are the aircraft’s

56

Table 4. SAM data used in the Aggregate Simulation. This data is saved as a persistent
MATLAB cell structure and is available for access during the entire simulation once
created.

SAM ID Type Location Known to the Aircraft Max Ground Range
(m) (m)

1 SAMlng (1000, 3000, 0) known 4000
2 SAMlng (4000, 3000, 0) known 4000
3 SAMlng (7000, 3000, 0) known 4000

Table 5. Waypoint data that contains information about the aircraft at each waypoint
along the flight path. This table only contains a subset of the parameters that are
stored for each waypoint. It also contains only the first 10 waypoints in the flight path.
This data is saved as a persistent MATLAB cell structure and is available for access
during the entire simulation once created.

Waypoint Location Heading Speed Ps 1 Ps 2 Ps 3
(m) (rad) (m/s)

1 (7000, 1000, 1500) 3.1416 250 0.88924 0.85419 0.96499
2 (6750, 1000, 1500) 3.1416 250 0.88048 0.86215 0.96044
3 (6504, 957, 1500) 3.3161 250 0.87634 0.90604 0.95422
4 (6262, 894, 1500) 3.3955 250 0.87173 0.93228 0.95469
5 (6025, 813, 1500) 3.4705 250 0.87816 0.95694 0.95398
6 (5795, 716, 1500) 3.5407 250 0.88856 0.97188 0.95204
7 (5568, 612, 1500) 3.5711 250 0.89667 0.96873 0.94587
8 (5338, 514, 1500) 3.5455 250 0.89751 0.96702 0.94094
9 (5101, 434, 1500) 3.4662 250 0.88868 0.9668 0.9429
10 (4856, 381, 1500) 3.3534 250 0.87128 0.96755 0.94405

heading and speed. It is assumed that the aircraft’s velocity vector is always aligned

with its heading. The location, velocity, and heading parameters are shown in Table

5. The data presented in this table is a subset of the data that is calculated and

stored for each waypoint in the flight path. Note that the type of aircraft used in

the scenario, shown in Table 6, is identified as HeavyA. This is a cargo or heavy lift

aircraft with generic parameters that is used for testing purposes. It is not based on

a real platform.

57

Table 6. Aircraft specific parameters. This data is saved as a persistent MATLAB cell
structure and is available for access during the entire simulation once created.

Type Max Velocity Max Altitude Initial Waypoints
(m/s) (m)

HeavyA 250 10000 strlvl

4.1.2 Generate a Full Scenario with Aircraft Responses to SAM Sites.

The Aggregate Simulation uses the Ps values at each waypoint to determine the

overall Ps for the aircraft during the engagement. It also uses Ps to determine if

the aircraft should perform a maneuver or implement a countermeasure at a specific

waypoint. Performing a maneuver changes the aircraft’s flight path, which causes a

change in the waypoints stored in the simulation. This test shows that the Aggregate

Simulation can create a set of waypoints, retrieve the Ps obtained for each SAM at

each waypoint and compare it to a threshold, and create a new set of waypoints when

the Ps is below the Ps threshold.

When the simulation begins, the aircraft is located at coordinate (7000, 1000,

1500) and is traveling to (1000, 1000, 1500) as shown in Figure 15. The simulation

creates a set of waypoints connecting the aircraft’s initial position and its final position

based on limitations relevant to the aircraft (e.g. the aircraft’s maximum speed). This

set of waypoints is then saved and the simulation begins by moving the aircraft from

its initial location to the next waypoint. The simulation ends when the aircraft reaches

the final waypoint at location (1000, 1000, 1500). At each waypoint, the simulation

calculates the probability that the aircraft survives a one-on-one engagement with

each of the SAM sites (the three previously mentioned in Table 4). If any one of these

Ps values falls below the Ps threshold which is set at 0.9, the simulation performs a

maneuver to turn the aircraft away from the SAM.

Table 7 shows the initial set of waypoints used in the simulation. If the Ps never

58

Table 7. The initial set of waypoints created by the simulation. Similar to Table 5,
it only contains a subset of the parameters for each waypoint and only the first 10
waypoints in the flight path. Since the aircraft has not traveled to each waypoint, the
Ps data has not been retrieved or stored.

Waypoint Location Heading Speed
(m) (rad) (m/s)

1 (7000, 1000, 1500) 3.1416 250
2 (6750, 1000, 1500) 3.1416 250
3 (6500, 1000, 1500) 3.1416 250
4 (6250, 1000, 1500) 3.1416 250
5 (6000, 1000, 1500) 3.1416 250
6 (5750, 1000, 1500) 3.1416 250
7 (5500, 1000, 1500) 3.1416 250
8 (5250, 1000, 1500) 3.1416 250
9 (5000, 1000, 1500) 3.1416 250
10 (4750, 1000, 1500) 3.1416 250

falls below the Ps threshold, then these ten waypoints are the points that the aircraft

followed on its way to its destination. Table 5 contains the actual set of waypoints that

the aircraft followed. These waypoints differ from those in Table 7. The differences

between Tables 5 and 7 begin with waypoint number 3. This is because there is at

least one Ps value in waypoint number 2 that is below the threshold of 0.9 1. Table 5

shows that there are two Ps values below 0.9, which results in a maneuver and course

correction. Each time the simulation decides that a maneuver (and resulting course

correction) is required, the waypoints are recalculated and stored.

Figure 17 shows the initial and final set of waypoints described in Tables 7 and 5.

The left image of Figure 17 shows the initial (planned) set of waypoints which lead

directly from the starting point at coordinate (7000, 1000, 1500) to the end point at

coordinate (1000, 1000, 1500). Notice that the course does not deviate from a straight

line; it is not affected by the SAMs in the scenario. The right image shows the set

1Note that there are also Ps values less than the 0.9 threshold in waypoint number 1. These are
ignored, however, because the Aggregate Simulation does not allow a manuever to be performed
from the initial location.

59

1000 2000 3000 4000 5000 6000 7000

−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1000 2000 3000 4000 5000 6000 7000

−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 17. A depiction of the initial (left image) and final (right image)sets of waypoints
generated during the simulation of the scenario in Figure 15.

of waypoints that the aircraft actually followed during the engagement. Notice that

these waypoints deviate from a straight line. Since this behavior is expected when the

Ps falls below the threshold, it is apparent that the simulation supports this desired

capability.

4.2 Engagement-Level Ps Data Generation, Storage, and Retrieval

Section 4.1 demonstrates that the Aggregate Simulation can manipulate the flight

path of a simulated aircraft based on the Ps values generated from simulated SAM

sites. This section shows the efficiency and results of the rigid cylinder format and

the expanding tables format for generating, storing, and accessing the Ps values that

the Aggregate Simulation uses. It compares these two approaches and shows why the

expanding tables format is the optimal choice.

4.2.1 The Estimated Duration of an Engagement-Level Simulation.

The purpose of this test is to develop a baseline estimate of the time required

(in seconds, not orders of operations used in algorithm analysis) to perform a single

call down to the engagement-level simulation. In subsequent subsections, the two

60

data cylinder formats are analyzed to determine how many calls to the engagement-

level simulation are required to generate the pre-computed data set and how many

run-time calls are needed to execute a mission-level simulation. The time duration

estimate generated here provides insight into the total time required to complete those

operations.

The estimate does not depend on the data cylinder format used. Both formats use

a common MATLAB module, runESAMS.m, to call the engagement-level simulation.

This module creates the necessary ESAMS input and command files, executes the

simulation, opens the output file, retrieves the Ps data, and cleans up the workspace.

The time estimate is based on an elapsed time beginning just prior to the function

call to runESAMS.m and ending just after this module returns its output data.

The time duration estimate does depend on the value of each of the eight data

cylinder parameters listed in the first column of Table 8. The parameters include

both common and unique data cylinder paramters. Selecting a value for each of these

eight data cylinder parameters results in a single input combination. The second

column of Table 8 shows the baseline input combination. Each parameter in Table 8

can be one of three values chosen for this test, which include the baseline value and

first and second alternate values. The alternate values are shown in the third and

fourth columns of Table 8. Note that in the example scenario given by Figure 15 and

utilized in Section 4.1, generic systems were used for the aircraft (i.e. ‘HeavyA’) and

SAM site (i.e. ‘SAMlng’). Since ESAMS provides data for real systems, the baseline

set of parameters uses a KC-135A aircraft and a SA-2 SAM site.

This test is run using a set of 17 input combinations: the baseline combination, and

16 additional combinations formed by substituting only one alternate value into the

baseline values per combination. Each input combination is then run for 500 iterations

and the time duration of each iteration is recorded. Then the estimated time duration

61

Table 8. A list of the baseline parameters used when computing the average ESAMS
completion time. Each of these parameters will be varied, individually, to assess its
impact on the average completion time.

Parameter Baseline Value Alternate Value 1 Alternate Value 2

Altitude 10000 m 5000 m 0 m
Angle 0 deg 90 deg 180 deg
Range 40000 m 20000 m 0 m
SAM type SA-2 SA-3 SA-6
Aircraft Type KC-135 F-4E A-10A
Aircraft Speed 200 m/s 400 m/s 500 m/s
Aircraft Maneuver None Left Turn Right Turn
Aircraft Countermeasure None Cntr1 Cntr2

for that input comination is created by averaging the 500 time durations. The 17

input combinations, data cylinder parameter values, and estimated time durations

are shown in Table 9.

Table 9 shows the estimated time duration for each input combination. To calcu-

late the average time duration, the estimated times for each of the combinations is

computed using

tr,av =
1

Ncomb

i=1
∑

Ncomb

ti (12)

where tr,av is the average time duration, Ncomb is the number of combinations used

in Table 9, and ti is the estimated time for the ith combination. This results in an

average time duration of 7.38 seconds to complete one engagement-level simulation

run. This estimated time duration is used in subsequent sections to provide insight

into the time required to perform various engagement-level simulation operations.

4.2.2 Generating the Pre-Computed Ps Data Set.

This section defines the pre-computed data set and describes the process of gen-

erating this data. Then it provides examples which show the relationship between

the input parameters and the time required to generate the data. Next, it contrasts

62

Table 9. The set of 17 input combinations used to call the engagement-level simula-
tion. The average time column shows the time averaged over 500 iterations to run the
simulation for the given combination of input values.

Altitude Angle Range SAM A/C A/C A/C A/C Avg.
(m) (deg) (m) Type Type Speed Man Cntr- Time

(m/s) msr (sec)

1 10000 0 40000 SA-2 KC-135 200 None None 7.30
2 5000 0 40000 SA-2 KC-135 200 None None 2.58
3 10000 90 40000 SA-2 KC-135 200 None None 6.75
4 10000 0 20000 SA-2 KC-135 200 None None 5.77
5 10000 0 40000 SA-3 KC-135 200 None None 2.56
6 10000 0 40000 SA-2 F-4E 200 None None 7.24
7 10000 0 40000 SA-2 KC-135 400 None None 7.27
8 10000 0 40000 SA-2 KC-135 200 Left None 24.29
9 10000 0 40000 SA-2 KC-135 200 None RGPOjm 4.17
10 0 0 40000 SA-2 KC-135 200 None None 2.47
11 10000 180 40000 SA-2 KC-135 200 None None 6.30
12 10000 0 0 SA-2 KC-135 200 None None 2.60
13 10000 0 40000 SA-6 KC-135 200 None None 3.15
14 10000 0 40000 SA-2 A-10A 200 None None 7.24
15 10000 0 40000 SA-2 KC-135 500 None None 7.28
16 10000 0 40000 SA-2 KC-135 200 Right None 24.33
17 10000 0 40000 SA-2 KC-135 200 None VGPOjm 4.15

63

the two data cylinder formats when generating the pre-computed data set.

4.2.2.1 The Definition of a Pre-Computed Data Set.

The pre-computed data set is the entire collection of Ps data that is generated

and available prior to the first execution of the mission-level simulation. It does not

necessarily contain a Ps value for every conceivable situation faced by the mission-level

simulation. Instead, the contents of the pre-computed data set are determined by the

user to cover the majority of situations faced by the mission-level simulation. Under

certain conditions, however, the mission-level simulation may need to augment this

data set with occassional run-time calls to the engagement-level simulation. These

conditions and the process of making run-time calls are discussed in Section 4.2.4.

The size of the pre-computed data set depends on the number of Ps values com-

puted within each data cylinder, Ncyl, and the number of data cylinders created,

m. Therefore, the pre-computed data set depends on the common and unique data

cylinder parameters. The total number of engagement-level simulation calls, Npre, is

Npre = mNcyl (13)

where m is the number of data cylinders and Ncyl is the number of points per data

cylinder.

The common data cylinder parameters comprise the geometry of the data cylinder.

They include the number of ranges, number of angles, and number of altitudes given

by nr, nθ, and nz, respectively. The product

Ncyl = nrnθnz (14)

represents the total number of engagement-level runs that must be performed per

64

data cylinder. The common data cylinder parameters also include the maximum

range and altitude values given by rmax and zmax respectively. These two values

determine how large of a volume the data cylinder encompasses. A data cylinder

that has rmax = 10000 is distinct from a data cylinder that has rmax = 20000. While

the data cylinder with rmax = 10000 may include some of the same points as that of

a cylinder with rmax = 20000, it does not contain all of them. These values, rmax and

zmax, are chosen to meet the requirements of the scenario.

The unique data cylinder parameters determine the set of data cylinders that

are created for the pre-computed data set. The number of data cylinders, m, is the

product of

m = nACsnspeedsnSAMsnmansncnts (15)

since the data cylinder is a function of the type and speed of the aircraft, the type of

SAM, and the types of aircraft maneuver and countermeasure.

4.2.2.2 Creation Time for an Example Pre-Computed Data Set.

To explore the time required to compute a representative pre-computed data set,

a scenario is created to study the effects of sending two types of aircraft into an

area defended by three types of SAM sites. The two types of aircraft are KC-135A

and F-4E. The three SAM types are SA-2, SA-3, and SA-6. When an aircraft is

flying through the airspace, it will not employ evasive maneuvers or countermeasures

unless it encounters a threat. When encountering a threat, the aircraft can perform

two evasive maneuvers: a left turn and a right turn. Likewise, it can perform two

countermeasures: Cntr1 and Cntr2. In this scenario, the aircraft are assumed to fly

at a constant speed. The data cylinders are created with 10 range values, 10 angle

values, and 10 altitude values. Initially, the maximum range, rmax, is set to 20,000

meters, and the maximum altitude, zmax, is set to 10,000 meters. Table 10 shows the

65

Table 10. A list of the possible values for each data cylinder parameter.

Parameter Value 1 Value 2 Value 3

nr 10
nθ 10
nz 10
rmax 20000 m
zmax 10000 m
Aircraft Type KC-135A F-4E
Aircraft Speed 250 m/s
SAM Type SA-2 SA-3 SA-6
Maneuver None
Countermeasure None

possible values for each of the data cylinder parameters in this scenario.

Applying nr, nθ, nz, from Table 10 to Equation (14) shows that Ncyl = 1000

engagement-level simulation runs are needed to create each data cylinder. Using

the average time per engagement-level run given by Equation (12), the average time

required to compute one data cylinder in this scenario is 7380 seconds or 2.05 hours.

The number of data cylinders needed by this scenario is given by Equation (15).

Since there are only single values for Aircraft Speed, Maneuver, and Countermeasure

in Table 10, nspeeds, nmans, and ncnts are all equal to one. The number of aircraft

types, nACs, is equal to two, and the number of SAM types, nSAMs, is equal to three.

Therefore, the number of data cylinders, m, is equal to six. Six data cylinders based

on the 2.03 hours per data cylinder results in a 12.18 hours simulation time to create

the pre-computed data set.

This scenario uses a range spacing, rres, and an altitude spacing, zres, of

rres =
rmax

nr

= 2000m

zres =
zmax

zr

= 1000m (16)

66

Table 11. A list of the possible values for each data cylinder parameter, using increased
resolution.

Parameter Value 1 Value 2 Value 3

nr 40
nθ 10
nz 20
rmax 20000 m
zmax 10000 m
Aircraft Type KC-135A F-4E
Aircraft Speed 250 m/s
SAM Type SA-2 SA-3 SA-6
Maneuver None
Countermeasure None

Suppose that these resolutions are not fine enough for the scenario being investigated.

If, instead, both the range and altitude spacing needed to be 500 meters without

changing rmax or zmax, then the values of nr and nz must change to compensate.

These new values are updated in Table 11.

Applying the updated values of nr, nθ, nz, from Table 11 to Equation (14) shows

that Ncyl = 8000 engagement-level simulation runs are needed to create each data

cylinder. Using the average time per engagement-level run given by Equation (12),

the average time required to compute one data cylinder in this scenario is 59040

seconds or 16.4 hours. To compute all 6 data cylinders in this scenario requires 98.4

hours or just over 4 days to complete. Making these two small changes in nr and nz

from Table 10 have increased the time required to produce the pre-computed data

set to eight times the original time.

One last change is required to make this simulation more realistic: incorporating

several maneuvers and countermeasures. Starting with the parameters in Table 11,

two maneuvers and two countermeasures are added. This collection of input values

is shown in Table 12. Adding these maneuvers and countermeasures means that

67

Table 12. A complete list of the possible values for each data cylinder parameter.

Parameter Value 1 Value 2 Value 3

nr 40
nθ 10
nz 20
rmax 20000 m
zmax 10000 m
Aircraft Type KC-135A F-4E
Aircraft Speed 250 m/s
SAM Type SA-2 SA-3 SA-6
Maneuver None Left Turn Right Turn
Countermeasure None Cntr1 Cntr2

the pre-computed data set requires m = 54 data cylinders. Since Ncyl = 8000 in the

scenario, the pre-computed data set now requires Npre = 432000 points. This requires

885.6 hours or 36.9 days to create.

4.2.2.3 Creating the Pre-Computed Data Set Using the Rigid Cylin-

der Format.

In the rigid cylinder format, each data cylinder (out of m total) is created individ-

ually and sequentially until the entire pre-computed data set is complete. Therefore

this format requires running an algorithm that creates the data cylinder m times. This

algorithm involves several basic steps, including loading, searching, vector creation

and multiplication, engagement-level simulations, data compilation, and saving.

For each data cylinder, the algorithm attempts to load previously saved Ps data

cylinders. The loaded data contains all previously created data cylinders that share

the same set of common data cylinder parameters. Each time the saved data is

loaded, it is searched to ensure that the data cylinder about to be created has not

been previously created. The number of saved data cylinders is given by m
′

∈ [0, m].

This means that up to O (m) matrix searches are required to ensure that each of

68

the data cylinders has not been previously created. Given that there are m
′

data

cylinders to search through (up to m), this results in up to O (m2) vector comparisons

are needed to perform these searches.

Each data cylinder is created and saved to the same file. After the first data

cylinder in the pre-computed data set is created and saved, the algorithm will load

this saved data set during each subsequent data cylinder creation. Since m data

cylinders are created with the same common data cylinder parameters, this process

will result in m − 1 loads and m saves.

Each data cylinder is composed of the Ncyl combinations of range, angle, and

altitude as shown in Section 4.2.2.1. These inputs are determined by creating three

vectors, one for the range, one for the angle, and one for the altitude. These vectors

have nr, nθ, and nz terms, respectively. These three vectors are manipulated to create

the full set of unique combinations possible. This process requires O (Ncyl) multiplies

per data cylinder. Creating the entire data set requires O (mNcyl) or O (Npre) multi-

plies.

To summarize, the rigid cylinder format requires O (m) loads, O (m) saves, O (Npre)

multiplies, and O (m) matrix searches to compute the entire pre-computed data set.

Each of the Npre inputs also requires an engagement-level simulation call.

4.2.2.4 Creating the Pre-Computed Data Set Using the Expanding

Tables Format.

In the expanding tables format, all data cylinders are created at once via the

creation of the three tables: Nodes, Elements, and Configuration. The Nodes table

forms the same set of vectors identifying the combinations of range, angle, and altitude

values from the rigid tables format in Section 4.2.2.3. The Nodes table only computes

these Ncyl values once, instead of m times, like the rigid cylinder format. Therefore,

69

this process requires O (Ncyl) multiplies for the entire pre-computed data set.

When creating the Elements table, the Nodes table is searched to link the vertices

of each Element with their associated Node number. The Elements table is composed

of (nr−1)nθ(nz−1) elements, and each element has eight vertices which all correspond

to one of the Ncyl nodes within the Nodes table. The algorithm that creates the

Elements table searches for each of the eight vertices within the Nodes table in the

same order that the eight vertices are stored in the Elements table. This means that

for each element only one complete search through the Nodes table is required. Since

(nr − 1)nθ(nz − 1) is approximately equal to nrnθnz or Ncyl, creating the Elements

table requires O (Ncyl) matrix searches.

When creating the Configuration table, each entry is labeled with the proper

common and unique data cylinder parameters. This is done by linking a particular

entry in the Configuration table with a particular entry in the Nodes table and by

storing the unique data cylinder parameters as a vector in the entry. For each of the

Npre entries in the Configuration table, the Nodes table is searched until the required

Node is found. This search does not require traversing the entire Ncyl entries in the

Nodes table for each of the Npre entries in the Configuration table, but assuming that

it does provides an upper bound. This bound shows that to complete all of the pre-

computed data set entries in the Configuration table requires O (Npre) matrix searches

or O
(

mN2

cyl

)

vector comparisons. The expanding tables format creates the same

vectors needed to create the input combinations of range, angle, and altitude shown

in Section 4.2.2.3. Therefore, it requires O (Npre) multiplies for the pre-computed

data set.

To summarize, the expanding tables format requires 1 load and 1 save, O (Npre)

multiplies, and O (Npre) matrix searches to compute the entire pre-computed data

set. Each of the Npre inputs also requires an engagement-level simulation call.

70

4.2.2.5 Comparison of the Two Data Cylinder Formats.

Both data cylinder formats are designed to generate the same number of points,

Npre, in the pre-computed data set. For this research, both data cylinder formats run

the engagement-level simulation for every input combination prior to the execution

of the mission-level simulation. This assumption assures that this data is available

to the mission-level simulation prior to its first run. Note that Npre does not include

any additional engagement-level simulation runs that must be performed at run-time

as discussed in Section 4.2.4.

Technically, the expanding tables format does not need to actually calculate the

Ps value for each point derived by the combination of inputs. Instead, the Nodes and

Elements tables could be created and populated, but the Configuration table could

be created and left empty prior to run-time. As the simulation is executing, entries in

the Configuration table could be created via run-time calls as Ps points are needed by

the mission-level simulation. This would eliminate the pre-computed data generation

state that precedes the mission-level simulation execution, but would greatly lengthen

the simulation execution time. For this research effort, however, both the expanding

tables and rigid cylinder formats are setup to create the same set of pre-computed

data.

The rigid cylinder format requires more loads and saves than the expanding tables

format because each data cylinder is created seperately. The rigid cylinder format

uses O (m) matrix searches while the expanding tables format uses O (Npre) matrix

searches. Both formats require O (Npre) multiplications and Npre engagement-level

simulation calls. Since the time required to perform each of the Npre engagement-level

simulation calls (7.38 seconds from Section 4.2.1), overshadows the time to perform

loads, saves, elementary operations (e.g. multiplications), the two data cylinder for-

mats have comparable performance when generating the pre-computed data set.

71

4.2.3 Accessing the Pre-Computed Ps Data.

For both data formats, accessing pre-computed Ps data occurs when the mission-

level simulation requires the Ps for a specific combination of the common and unique

data parameters. Since both data formats store the data differently, this process of

accessing a Ps value is significantly different. This section will compare the operation

and efficiency of the two formats highlighting their dependence on the number of Ps

values in the data set. Note that this section only applies to accessing pre-computed

data. This means that m and Npre are fixed at their pre-computed values. The

changes in efficiency due to additional data cylinders and/or additional Ps values are

addressed in Section 4.3.

Note that a Ps access is required for every waypoint that the aircraft traverses

during the course of the mission-level simulation. For a given aircraft, nw,a waypoints

are required to get the aircraft from its starting location to its destination, or ending

location. The number of waypoints, nw,a, is a function of the aircraft used (identified

by the subscript a if there are more than one aircraft in the simulation), the maneuvers

allowed, the aircraft’s starting and ending location, and the type and locations of

the SAM sites. The following analyses of the data formats address the efficiency

of accessing one Ps values per waypoint. One Ps access per waypoint occurs when

there is only one SAM site in the simulation. There may be multiple SAM sites

(i.e. nSAMs ≥ 1) in the scenario, which means that there are nSAMs accesses per

waypoint. When evaluating the total effect of accessing Ps data, the results from the

following sections for both of the data formats must be paired with the total number

of waypoints, nw,a for each of nACs aircraft in the simulation.

72

Figure 18. A flowchart showing how a Ps values is retrieved from a pre-computed data
set using the rigid cylinder data format.

4.2.3.1 Accessing Ps Using the Rigid Cylinder Format.

Figure 18 shows the steps required to retrieve a Ps value from the pre-computed

data set using the rigid cylinder data format. This process first determines the com-

mon data cylinder parameters and retrieves information about the SAM sites and

aircraft. Once the mission-level simulation begins executing, it uses the same set of

common data cylinder parameters throughout its execution. Next, the process deter-

mines the unique data cylinder parameters by polling the SAM and aircraft objects.

Once all of the common and unique data cylinder parameters are identified, the al-

gorithm searches through the pre-computed data set to find the data cylinder that

matches those parameters. Once the correct data cylinder is found, the algorithm

searches for the correct Ps value.

Before the algorithm searches for the Ps value in the data cylinder, it compares

the location of the SAM site with the location and heading of the aircraft to compute

the range, angle, and altitude parameters. These parameters are then quantized to

73

the closest value that is stored in the data cylinder. With the quantized parameters,

the algorithm searches through the data cylinder to find the proper Ps value.

The algorithm searches through each of m data cylinders looking for the cylinder

that matches both the common and unique data cylinder parameters. This requires

O (m) compares. Once the proper data cylinder is found, the algorithm searches for

the quantized range, angle, and altitude combination. This search traverses up to Ncyl

entries, requiring up to Ncyl vector comparisons. This requires O (Ncyl) compares.

Therefore, the rigid cylinder format requires O (m + Ncyl) compares to locate the

correct Ps data.

4.2.3.2 Accessing Ps Using the Expanding Tables Format.

Figure 19 shows the steps required to retrieve a Ps value from the pre-computed

data set using the expanding tables data format. Similar to the rigid cylinder format,

this process begins by identifying aircraft and SAM information and then determining

the common and unique data cylinder parameters. Once all of the common and unique

data cylinder parameters are identified, the algorithm begins searching the tables to

find or interpolate the Ps value.

First the Nodes table is searched to see if the particular range, angle, and altitude

combination is contained as a node. This search traverses up to Ncyl entries, requiring

up to Ncyl vector comparisons. If the range, angle, altitude combination is found as

a node, then this Ps access is referred to as a direct lookup. The Configuration table

is searched to find the entry that matches the node (representing the common data

cylinder parameters) and the unique data cylinder parameters. Previously, in Section

4.2.2.5, it was assumed that all pre-computed data cylinder points are run prior to

the mission-level simulation execution. Therefore, the Ps value is already computed

and stored in the Configuration table. Searching the Configuration table traverses

74

Figure 19. A flowchart showing how a Ps values is retrieved from a pre-computed data
set using the expanding tables data format.

up to Npre entries, requiring up to Npre vector comparisons. A direct lookup then

requires up to O (Ncyl) vector comparisons in the Nodes table and up to O (Npre)

vector comparisons in the Configuration table per aircraft, SAM, and waypoint.

If the range, angle, altitude combination is not found as a node, then the Elements

table is searched to see if the combination falls within the vertices of one of the

elements. This search traverses up to (nr − 1)nθ(nz − 1) entries, requiring up to

(nr − 1)nθ(nz − 1) vector comparisons. If the range, angle, altitude combination is

contained within an element, then interpolation of the Ps values at each of the vertices

is performed to create an estimated Ps value for the current point. To return the Ps

values of each vertice from the Configuration table requires eight searches or up to

8Npre vector comparisons. This is the same as O (Npre) vector comparisons for one

aircraft, one SAM, and one waypoint.

If the range, angle, altitude combination is not contained within any of the el-

ements in the Elements table, then a run-time call is performed. This outcome is

discussed in Section 4.2.4. Therefore, there are two ways of accessing the Ps data in

the expanding tables format: finding it in the Nodes and pulling it out of the Configu-

75

Table 13. The efficiency of each of two methods of accessing pre-computed Ps data
using the expanding tables format. This table shows the upper bound on the order
of vector comparisons required to access Ps data for one aircraft, one SAM, and one
waypoint using the expanding tables format.

Method Nodes Elements Configuration Total

Direct O (Ncyl) N/A O (Npre) O (Npre)
Interpolation O (Ncyl) O (Ncyl) O (Npre) O (Npre)

ration table (i.e. a direct lookup), or finding it in the Elements table and interpolating

it from the Configuration table (i.e. an interpolation). These two methods are shown

in Table 13.

Note that both methods require searching the Nodes table and Configuration

table, but only the interpolation method requires searching the Elements table. Both

methods require O (Npre) overall vector comparisons to complete for one aircraft, one

SAM, and one waypoint.

4.2.3.3 Comparison of the Two Data Cylinder Formats.

The rigid cylinder format only requires O (m + Ncyl) comparisons to access pre-

computed data, whereas the expanding tables format requires O (mNcyl) comparisons.

Therefore, the rigid cylinder format is more efficient at accessing the data.

4.2.4 Performing Run-Time Calls to Create Additional Ps Data.

In the rigid cylinder format performing run-time calls is implemented by either

creating and saving a new data cylinder using the same common data cylinder pa-

rameters or creating and not saving a specific Ps value. Creating a new data cylinder

is only allowed when the Ps value uses a new combination of unique data cylinder

parameters, the same combination of common data cylinder parameters, and when

the r and z fall within the values of 0 and rmax and zmax.

76

The only values saved in the rigid cylinder format after the pre-computed data

set are additional, complete data cylinders that use the same common parameters.

This is required because the algorithm used in retrieving Ps values for this format is

based on a priori knowledge of rmax and zmax.

If a new data cylinder is created, then the rigid cylinder format requires the time

to perform Ncyl new engagement-level simulation runs and adds an entire matrix to

the data set. If only a specific Ps value is created, it requires only the time to perform

one engagement-level simulation run and no additional storage space since the single

Ps value is not saved. If that point is required again by the simulation, however, time

is spent to perform the run-time call again.

In the expanding tables format each run-time call is represented as a new row in

the Configuration table. Thus, it requires only the time to perform one engagement-

level simulation run and the storage to add a new line in an already established

matrix.

4.2.5 Overall Comparison of the Two Data Cylinder Formats.

Both formats are evenly matched when generating the pre-computed data set due

to the large influence of running the engagement-level simulation Npre times. When

accessing the data, the rigid cylinder format is more efficient because it requires

only O (m + Ncyl) comparisons, while the expanding tables format requires O (mNcyl)

comparisons. When performing run-time calls, the expanding tables format is more

efficient because each run-time call is saved in the expanding tables format without

generating additional points. The rigid cylinder format requires either an entire

data cylinder to be created before saving the data or to not save the run-time calls.

Therefore, the run-time calls may be repeated in the future.

Based on the expanding tables format’s ability to store individual Ps values from

77

run-time calls without generating Ncyl − 1 additional points, it is chosen to fulfill the

further tests in Section 4.3.

4.3 Extended Duration Tests

4.3.1 Test Description.

This test is designed to show the performance effects of running the mission-

level simulation multiple times. It shows the number of run-time engagement-level

simulation calls per mission-level simulation as a function of the number of mission-

level simulation executions, Nsims. It also shows the execution time of the mission-

level simulation as a function of Nsims. For the duration of the thesis, a run-time call

refers to calling the engagement-level simulation from the mission-level simulation

while the mission-level simulation is executing.

Figure 20 shows the setup of the test. Three SAM sites are included at locations:

(1000, 3000, 0), (4000, 3000, 0), and (7000, 3000, 0). The aircraft start and end

locations are varied for each run about the points (18000, 1000, 1500) and (1000,

1000, 1500), respectively. The simulation is run Nsims = 1000 times for each set

of data collected. A set of data in this case represents the effects of the number of

run-time calls and the simulation execution time for a given set of inputs. Three sets

of data are run for this test and used to compare the effects of changing the input

parameters.

The only input parameters that change between the sets are the variance of the

start and end locations about the points (18000, 1000, 1500) and (1000, 1000, 1500).

Set 1 uses a Gaussian random variable with σ = 1000 for the x and y components of

both the start and end points. Sets 2 and 3 also use Gaussian random variables to

create the x and y components, but use σ = 100 and σ = 10, respectively. All three

sets always begin and end (with no variance) at z = 1500.

78

0 5,000 10,000 15,000 20,000
0

1,000

2,000

3,000

4,000

5,000
Long−Term Test Scenario

(m)

(m
)

Figure 20. This figure shows the scenario used when performing the long-term test.

The Gaussian random variable has two uses in this test. First, it is the model

used to vary the start and end locations during the collection of each set of data.

The start and end locations must change so that new data points are needed by the

simulation. Ultimately, one of the goals of this test is to show that as more and

more points are saved in the tables, even simulations using random start and end

locations are able to leverage some of the saved data and reduce the number of run-

time calls performed. Second, the Gaussian random process helps shows the effects on

simulation time and number of run-time calls without requiring an excessive number

of mission-level simulation executions, Nsims.

All three sets of data are run using a simulated engagement-level simulation.

Instead of calling the engagement-level simulation to create the pre-computed data

set and perform each of the run-time calls required by the Nsims = 1000 simulations,

a simple piece of code is used that returns a simulated Ps value. This is to reduce

the time required to perform all of the engagement-level simulations.

One more point about the test setup needs to be made before discussing the

79

results. It is important to carefully choose the precision of the data that is saved into

the tables. If the data is saved at a high precision and no algorithm is supplied to

compare data points at a lower precision, then it is more unlikely that two data points

will be declared the same even if they are close. For example, imagine a scenario that

uses rmax = 10000 and that the mission-level simulation requires a data point at

r1 = 12345.678 meters. Since r1 exceeds the maximum range, rmax, a run-time call is

performed and the data is saved after being rounded to the nearest thousandth. This

might seem like a reasonable precision for a computer simulation, but notice that this

is actually saving data to the nearest millimeter! If another point is needed, with

r2 = 12345.668, then a run-time call is generated because r1 6= r2, even though they

are only separated by 1 centimeter. The data precision must be considered either

when saving the data into the table (e.g. by rounding to the nearest integer) or

when performing the comparisons (e.g. rounding all the saved points in the table and

rounding the input points before comparing). In this test, all points with coordinates

(r, θ, z) are rounded to the nearest integer before being saved into the tables.

4.3.2 Test Results.

Figure 21 shows the effects of each set on the number of run-time calls. The data

in this chart represents a running average of the number of run-time calls compared

with the number of simulations that have been performed. Each of the three sets of

data are shown on the same figure. Set 3 has the smallest standard deviation (σ = 10)

of the three sets. Since it has the tightest grouping of start and end points, it shows

the fastest decrease in number of run-time calls. Set 1 has the slowest decline in the

number of run-time calls since its start and end points are spread over the largest

area.

Figure 22 shows the effects of each set on the execution time of one mission-level

80

0 200 400 600 800 1000
0

20

40

60

80

100

120
Number of Run−Time Calls Per Simulation

Run Number

N
um

be
r

of
 R

un
−

T
im

e
C

al
ls

Set 1, σ = 1000
Set 2, σ = 100
Set 3, σ = 10

Figure 21. This figure shows the number of run-time calls performed by the mission-
level simulation as the number of mission-level simulations increases. Each subsequent
mission-level simulation adds run-time data to the tables reducing the likelihood that
further run-time calls are needed.

simulation. This time does not include the time required to generate or load the

pre-computed data set at the beginning of each mission-level simulation. The data

in this figure represents a running average of the simulation time compared with the

number of simulations that have been performed. This figure shows that Set 3 has the

shortest simulation time, followed by Set 2 and Set 1, respectively. This correlates to

the number of run-time calls shown in Table 21. Since Set 3 had the least run-time

calls for a given number of simulations, it should take the least amount of time to

execute. The data in Figure 22 also shows that the simulation time increases as the

number of run-time calls saved in the tables increases. As the tables get larger, they

require more time to be searched.

This may not seem so straightforward if one considers that the engagement-level

simulations are simulated as stated in Section 4.3.1. Since the data shown in Figure

22 does not include the 7.38 second average delay for each engagement-level simu-

lation, then what causes the reduced simulation time? It is the order in which the

81

0 200 400 600 800 1000
10

15

20

25

30

35

40

45

50
Average Mission−Level Sim Time

Run Number

T
im

e
(s

ec
)

Set 1, σ = 1000
Set 2, σ = 100
Set 3, σ = 10

Figure 22. This figure shows the time required to complete a mission-level simulation
as the number of mission-level simulations increases. This figure does not include the
time required to perform each run-time call (i.e. tr,av is equal to zero).

tables are searched prior to issuing a run-time call. If the mission-level simulation

needs a Ps value for a point, first the Nodes and Configuration tables is searched for

a direct lookup, then the Elements, Nodes, and Configuration tables are searched for

an interpolation, and then a run-time call is issued. If the point is found in the Nodes

table, then the interpolation searches and run-time calls are not necessary. Eliminat-

ing the searches associated with the interpolation function provides the reduction in

simulation time.

By creating these three sets of data using a simulated engagement-level simulation,

the time required to perform this test was significantly reduced. Table 14 shows the

total number of engagement-level simulation calls (via the pre-computed data set

and run-time calls) required to produce the data used in the long term test. The

three sets of data use the same pre-computed data set, so it was created only once.

The pre-computed data set contained Npre = 12000 Ps values. The total number of

run-time calls performed for each set is also shown in Table 14. Each of the times

82

Table 14. This table shows the average time savings gained from simulating the
engagement-level simulation while performing the long-term test of Section 4.3.

Data Set Engagement-Level Runs Time Time Time
(secs) (hrs) (days)

Pre-Computed Data Set 12000 88560 24.6 1.02
Set 1 67674 499434 138.7 5.78
Set 2 39299 290027 80.6 3.36
Set 3 5358 39542 11.0 0.46

Total 124331 917563 254.9 10.62

listed in the table is based on the average time of 7.38 seconds per engagement-level

simulation from Section 4.2.1. The total time required to compute the engagement-

level simulations is over 10.6 days. Since these values are simulated, these 10.6 days

are not needed while generating the data.

Figure 23 shows the result of adding the data in Figure 22 with the average time

required to perform all run-time calls for each simulation. This basically results in

adding the data in Figure 22 with 7.38 seconds multiplying the data in Figure 21.

This figure shows that the increased time required to search the tables as the sizes

of the tables increase is overshadowed by the decreasing time required to perform

run-time calls.

83

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900
Average Mission−Level Sim Time

Run Number

T
im

e
(s

ec
)

Set 1, σ = 1000
Set 2, σ = 100
Set 3, σ = 10

Figure 23. This figure shows the time required to complete a mission-level simulation
as the number of mission-level simulations increases. This figure includes the average
time required to perform each run-time call (i.e. tr,av is equal to 7.38 secs).

84

V. Improving Efficiency Using the Data Cylinder

Representation

This chapter analyzes the ability of the mission-level simulation to accurately cal-

culate the mission Ps when using varying numbers of samples. Reducing the number

of samples and testing the resulting accuracy of the simulation’s ability to calculate Ps

is referred to as reduced sample accuracy tests. Similar to Chapter IV, the reduced

sample accuracy tests also require a relevant, notional scenario for analysis. This

scenario is populated with real entities (i.e. aircraft and SAM sites) and the data

cylinder representation is applied. Several simulations are run in ESAMS, but only

relative results are presented because the approach is not dependent on the specific

engagement-level model.

This chapter not only analyzes improvements in efficiency shown by the reduced

sample accuracy test, but it also culminates this research by applying the data cylinder

representation to a realistic scenario to achieve a desired result: gaining understanding

of the efficiency when using a reduced set of samples. While the concept of reducing

the set of samples is introduced and briefly studied here, this research is intended to

provide a survey of this material and to stimulate further research in this area.

5.1 A Notional Scenario

The reduced sample accuracy tests contained in Section 5.3 utilize data cylinders

built upon real systems. This section provides a few definitions to eliminate ambigui-

ties associated with the reduced sample accuracy tests. Then it provides and describes

a notional scenario based upon legacy SAM and aircraft systems. Last, it provides

general objectives of the scenario when applied to the reduced sample accuracy tests.

85

5.1.1 Scenario Definitions.

This section provides a few definitions used to describe the scenario and to execute

the reduced sample accuracy tests.

Throughout this thesis, the Aggregate Simulation, which is a mission-level simula-

tion, has simulated an aircraft, one or more SAM sites, and the path that the aircraft

traverses during the simulation. The path that the aircraft traverses is represented

in the simulation as a list of samples that contain the three-dimensional coordinate

locations of the aircraft. A full sample list is defined as the complete set of samples

created by the Aggregate Simulation using a specified number of samples per second.

A truncated sample list is any subset of a full sample list that does not contain all

of the samples in the full sample list. For the work performed in Section 5.3, the

truncated sample list is generated from the full sample list.

A reduced sample accuracy test is a test that compares the accuracy of a full

sample list with a truncated sample list. Reducing the number of samples is an

attempt to improve the mission-level simulation efficiency by reducing the number of

computations required. A reduced sample accuracy test provides a systematic method

of determining the accuracy of the Ps data that is computed from a truncated sample

list compared to the Ps data that is computed from a full sample list. This is described

in more detail in Section 5.3.2.

The reduced sample accuracy tests in Section 5.3 all share common SAM types

and locations, referred to as an Electronic Order of Battle (EOB). An EOB map is

a map that shows the type and placement of multiple SAM sites. The aircraft and

samples are not included. Only one EOB is needed for the tests in Section 5.3.

The reduced sample accuracy tests are based upon specific aircraft/SAM encoun-

ters defined as missions. A mission is a simulated encounter operating at the mission-

level of the hierarchy of models between one specific aircraft and each of the SAMs

86

identified in the EOB as the aircraft moves from its starting location to its ending

location. A mission also contains the aircraft’s full sample list. Section 5.3 uses four

missions, where the aircraft’s starting location is varied between each run.

A mission map is a map that combines each of the SAM sites and types identified

in the EOB map with a single mission. Thus, a mission map contains the aircraft type,

the SAM type, and the aircraft’s location data. This data can be used as an input to

the Aggregate Simulation simulation. The mission map also contains the full sample

list that is generated by the Aggregate Simulation. Since a mission map contains a

full sample list, it can also be used to generate truncated sample lists. Therefore, a

single mission map serves as the input for a single reduced sample accuracy test.

Aircraft Ps values are generated for each aircraft and SAM site combination along

each sample in the full sample list and for the entire mission. A sample Ps is defined

as the Ps of the aircraft at a specific sample. The full sample mission Ps is defined

as the Ps of the aircraft over a single mission using the full sample list. The sample

Ps and full sample mission Ps are determined similar to Pn and PMC , respectively, in

Section 3.3.4. The truncated sample mission Ps is defined as the Ps of the aircraft

over the whole mission using the truncated sample list. Each sample in the truncated

sample list results in a sample Ps, and the truncated sample mission Ps is calculated

similar to PMC in Section 3.3.4 using only the truncated set of samples.

5.1.2 Scenario Descriptions.

This section defines the EOB map, and the components that comprise the missions

used in Section 5.3.

Figure 24 shows the EOB map that is used for the reduced sample accuracy

testing. This map contains three SAM sites, including two SA-2 sites and one SA-3

site. This is the only EOB map used for the testing.

87

Figure 24. The Electronic Order of Battle (EOB) map used for reduced sample accuracy
testing.

Section 5.3.3 contains four missions for the reduced sample accuracy testing. Each

of the mission uses a KC-135 aircraft. The starting locations vary between the mis-

sions, but the ending location remains fixed at (1000, 3000, 1500). Figure 25 shows

an example mission map. This map contains the locations and types of the SAM

sites, along with the start and end locations of the aircraft.

Figure 26 depicts all four missions used in the reduced sample accuracy tests.

The diamonds labeled S1 through S4 represent the starting locations for missions 1

through 4, respectively.

The notional scenario developed here is used to support the reduced sample ac-

curacy tests in Section 5.3. It is designed to allow multiple angles of approach to a

fixed destination that is surrounded by SAM sites. The close proximity of SAM sites

ensures that the flight path of the aircraft is affected during the mission simulation.

Thus, the aircraft’s Ps along its route will change based upon angle and distance to

88

Figure 25. This is an example of a mission map. It contains all the information from
the EOB map, the aircraft starting/ending points, and a full sample list.

each of the SAM sites. Reducing the number of samples used throughout the flight

path will highlight some of the Ps values and ignore others. This scenario provides a

picture of the error invoked due to the sample reduction.

5.2 Applying the Data Cylinder Representation to the Notional Scenario

This section shows how the data cylinder representation is applied to the notional

scenario. It examines the components of the scenario and then shows the size of the

pre-computed data set necessary to run this scenario using the Aggregate Simulation.

5.2.1 Data Cylinder Representation Applicability.

If the scenario can be separated into separate aircraft/SAM encounters, then the

data cylinder representation can be applied. Figure 26 shows four starting locations

(S1 through S4) and three SAM sites. Figure 27 is an example of how the four

89

Figure 26. This figure contains the EOB map and the starting and ending points
for each of the four mission maps comprising the notional scenario. S1 through S4
represent the starting points of missions 1 through 4, respectively. Each mission has
the same ending point, End.

90

Figure 27. An example of how Figure 26 can be divided into numerous engagements
between a single aircraft and a single SAM site.

scenarios can be divided into separate engagements involving a single aircraft and

a single SAM site. It uses the first mission, indicated by the starting location, S1,

and the ending location, End. Then it highlights a single SAM for each of the three

images. Each image therefore represents a single engagement and all three images

combined represent a single mission map.

5.2.2 Pre-Computed Data Set.

This section defines the pre-computed data set and determines the average time

required to generate it.

The notional scenario contains one aircraft type, a KC-135, and two SAM types,

an SA-2 and an SA-3. Only one aircraft speed is used. Three maneuvers and four

countermeasures are included in the pre-computed data set. Using Equation (15),

this results in a pre-computed data set that contains m = 1 · 1 · 2 · 3 · 4 or 24 data

cylinders. The number of points in each data cylinder, Ncyl is set to 1000, based upon

10 angles, 10 ranges, and 10 altitudes using Equation (14).

Since there are 24 data cylinders that each contain 1000 points, the total number

of engagement-level simulation calls is Npre = 24000 from Equation (13). Using

the average time of 7.38 sec from Section 4.2.1, generating this pre-computed data

91

cylinder will take 49.2 hours or just over 2 days.

5.3 Reduced Sample Accuracy Tests

5.3.1 Limitation of Provided Results.

All Ps values computed using ESAMS are classified. Since these values are clas-

sified, they are not reported in this research. Instead, two Ps values are compared

using Equation (17). This equation determines the reduced sample accuracy error,

eacc, between the full sample mission Ps,full and the truncated sample mission Ps,trun.

An ideal value for eacc is zero, and the closer eacc is to zero, the smaller the error.

eacc =
|Ps,full − Ps,trun|

Ps,full

(17)

5.3.2 Reduced Sample Accuracy Test Description.

Figure 28 shows the overall process for performing a reduced sample accuracy test.

It involves setting up the EOB and aircraft data and then running the Aggregate

Simulation. The Aggregate Simulation returns a full sample mission Ps value and

a full sample list. Then a truncated sample list is created from the full sample list,

and a truncated sample mission Ps value is computed. The full and truncated sample

mission Ps values are then compared using Equation (17) and an accuracy result is

generated. The accuracy result, eacc, is the output of the test.

Several methods of truncating the full sample list are used in the reduced sample

accuracy tests. Figure 29 compares each of the truncation methods to a full set of

samples. The first row is the full sample list. Rows two through five are truncation

methods that use less and less samples spaced evenly throughout the full sample list.

The last truncation method uses only the first, middle, and last samples of the full

sample list. In this figure, the black squares represent the samples that are selected by

92

Figure 28. The flowchart of events comprising the reduced sample accuracy testing.
The result of this process is the accuracy result, eacc, that shows the consistency between
the full and truncated sample mission Ps values.

the truncation method, and gray squares represent the samples that are omitted by

the truncation method. Notice that the row labeled By 1s includes all of the samples

of the full sample list. It is included to ensure that the accuracy algorithm is working

correctly. If the algorithm is working correctly, then the row By 1s returns eacc = 0.

5.3.3 Accuracy Results from the Reduced Sample Accuracy Tests.

The results from the reduced sample accuracy tests are shown in Figures 30 and

31. These two figures present the same data, but highlight different trends in the

data. Figure 30 shows the error as a function of the number of samples used in the

mission. It is composed of four images that each represent one of the four missions.

Figure 31 shows the error as a function of which mission was executed. It is composed

of five images that each represent one of the five truncation methods.

In Figure 30, the independent axes of each subfigure is the number of samples

used to simulate the flight path in the mission. Increasing the number of samples

should decrease the error caused by truncation or omission of samples. Hence, the

error lines in the images in Figure 30 should decrease as the number of samples per

93

Figure 29. A notional example showing how each truncation method selects a reduced
set of samples from a full set of samples. The top row is the full set and the other
rows are the truncation results. Black squares represent samples that are selected by
the truncation method, and gray squares represent samples that are omitted by the
truncation method.

94

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

Mission 1: Error vs. Number of Samples

Number of Samples

E
rr

or

By 1s
By 2s
By 3s
By 5s
First, Mid, Last

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

Mission 2: Error vs. Number of Samples

Number of Samples

E
rr

or

By 1s
By 2s
By 3s
By 5s
First, Mid, Last

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

Mission 3: Error vs. Number of Samples

Number of Samples

E
rr

or

By 1s
By 2s
By 3s
By 5s
First, Mid, Last

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

Mission 4: Error vs. Number of Samples

Number of Samples

E
rr

or

By 1s
By 2s
By 3s
By 5s
First, Mid, Last

Figure 30. This series of charts shows the error as a function of the number of sam-
ples per second used in the mission. Each figure represents one of the four missions
comprising the reduced sample accuracy tests. Note that the results from the By 1s

truncation method do not appear on any of these images. These results are all equal
to zero and are not shown on the logarithmic scale.

95

second is increased. Figure 30 shows that this condition holds true for all truncation

methods except the First, Middle, Last method. This truncation method only uses

three points to determine the truncated sample mission Ps and does not use more

points as the number of samples per second in the full sample list increases. Therefore,

its accuracy does not depend on the number of samples used in the mission.

Note that the results from the By 1s truncation method do not appear in the

images in Figure 30. These results are all equal to zero and are not shown on the

logarithmic scale. They are displayed on the first image in Figure 31.

In Figure 31, the independent axes of each subfigure is the mission used during

the simulation. This figure is what a mission planner would consult when preparing

and planning a mission to show how varying the mission start point and the reduction

of samples will affect the accuracy of the simulation. This figure shows the error as

a function of which mission is executed. It also shows the error for each number of

samples used by the mission. As stated previously, as the number of samples increases,

the error associated with a given truncation method should decrease (except for the

First, Middle, Last method). This condition is apparent in the images in Figure 31.

Many factors can influence the outcome of the accuracy when it is viewed as a

function of the mission executed. Since this research provides only a survey of this

application, it does not seek to identify or study all of the the pertinent factors.

Instead, this thesis seeks to stimulate research in this area in future research efforts.

96

1 2 3 4
−1

−0.5

0

0.5

1
Truncation Method 1: Error vs. Mission Number

Mission Number

E
rr

or

1
10
100
1000

1 2 3 4

10
−6

10
−4

10
−2

10
0

Truncation Method 2: Error vs. Mission Number

Mission Number

E
rr

or

1
10
100
1000

1 2 3 4

10
−6

10
−4

10
−2

10
0

Truncation Method 3: Error vs. Mission Number

Mission Number

E
rr

or

1
10
100
1000

1 2 3 4

10
−6

10
−4

10
−2

10
0

Truncation Method 4: Error vs. Mission Number

Mission Number

E
rr

or

1
10
100
1000

1 2 3 4

10
−6

10
−4

10
−2

10
0

Truncation Method 5: Error vs. Mission Number

Mission Number

E
rr

or

1
10
100
1000

Figure 31. This series of charts shows the error as a function of the mission executed.
Each of the five images represents one of the five truncation methods from Figure 29.
Each line on each image represents the number of samples simulated per second (i.e.
1 sample per second, 10 samples per second, etc.).

97

VI. Conclusions and Future Work

6.1 Conclusions

This research successfully created a simple mission-level simulation from data

generated from an engagement-level simulation. This represents an aggregation of

the engagement-level simulation into a mission-level simulation. Two formats, or

algorithms, were developed that facilitate this aggregation process.

The rigid cylinder format provides a simple and intuitive way to visualize the

data storage paradigm. It stores engagement-level simulation data for many types of

inputs and provides a mission-level interface to the data.

The expanding tables format builds on the capabilities of the rigid cylinder format

by adding in flexibility and growth. Using this format, data can be stored prior to

and during the execution of the mission-level simulation. When this process of storing

run-time data is repeated multiple times, it begins to reduce the simulation time. The

number of run-time calls to the engagement-level simulation decreases, and the time

required to perform the mission-level simulation benefits as a result.

The reduced sample accuracy tests show that a reduction in the number of samples

used by the mission-level simulation creates an error in the mission Ps. Assuming this

error is acceptable to a specific application means that the efficiency of the mission-

level simulation is increased through a reduction in the computational burder of the

mission-level simulation.

The type of aggregation performed in this research can be used by many organi-

zations for various reasons. Since this method utilizes mature and vallidated simula-

tions, like ESAMS, it can be employed for purposes such as rapid prototyping. This

allows the organization to get a reasonable capability without extensive simulation

design and testing.

98

6.2 Additional Research

The research presented here shows the process of aggregating one engagement-

level simulation to the mission-level. Further research can address aggregating other

engagement-level simulations to the mission-level and integrating these mission-level

simulations into one entity.

MATLAB was chosen as the programming language because it provides an easy

interface to develop and visulize code. Further research can reimplement this coding

effort in a language (like C++) that is more efficient and provides object oriented

benefits.

When using the expanding tables format, the Elements table is generated with

the pre-computed data set and does not change. This research effort did not have

the time to develop the complicated algorithm needed to create new elements. Thus,

the Elements table is never expanded during run-time. Future research can address

developing this algorithm and the constraints that go with it. Questions to answer

include: When should new elements be added? Should adding new elements (and

therefore expanding the applicability of using interpolation) be preferred to simply

performing new run-time calls and storing the data? How will the algorithm decide

to create new elements?

Figure 22 shows that as more and more items are added to the Nodes and Con-

figuration tables, the time required to search them increases. Further research could

include developing or implementing a more advanced search and/or sorting algorithm

to decrease this time.

The method used to approximate PMC in Section 3.3.4 should be reviewed and a

more appropriate algorithm should be developed. This method does not utilize the

conditional probabilities inherent between the waypoints that the aircraft traverses.

Future research should seek a way to efficiently quantify these probabilties so that

99

they can be determined at the mission-level. Also, the algorithm should be updated

to better represent the effect of Pn values that are close to zero so that they are not

mis-interpreted as higher level probabilities.

A last area for further research involves the accuracy and resolution comparisons

from Chapter V. Additional research could propose further tests, accuracy algo-

rithms, and pertinent scenarios. Also, these aspects could be developed for specific

scenarios or disciplines (e.g. mission planning or radar analyses utilizing the Ag-

gregate Simulation). Further testing can be used to show a mission planner which

truncation methods will work the best for certain applications.

100

Bibliography

[1] “Extensibility”, 04/29/2009 2009. URL http://en.wikipedia.org/wiki/

Extensibility.

[2] “Scalability”, 04/29/2009 2009. URL http://en.wikipedia.org/wiki/

Scalable.

[3] Amato, N. J. Modeling and Simulation Architecture for Studying Doppler-Based

Radar with Complex Environments. Master’s thesis, Air Force Institute of Tech-
nology, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, March 2009.

[4] Bacso, J. P. and R. F. Moody. “Project amber: re-engineering a legacy ground
radar modeling system into a standards based object oriented architecture”.
Aerospace and Electronics Conference, 1998. NAECON 1998. Proceedings of the

IEEE 1998 National, 339–346, 1998.

[5] Ball, R. E. The Fundamentals of Aircraft Combat Survivability Analysis and

Design. American Institute of Aeronautics and Astronautics, 2nd ed. edition,
2003.

[6] Cohen, S. and L. M. Northrop. “Object-oriented technology and domain analy-
sis”. 86–93. 1998.

[7] Currenti, G., C. Del Negro, D. Scandura, and C.A. Williams. “Automated pro-
cedure for InSAR data inversion using Finite Element Method”. Use of Re-

mote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, 2008.

USEReST 2008. Second Workshop on, 1–5. Nov. 2008.

[8] Davis, Paul K. An Introduction to Variable-Resolution Modeling, 5–35. Warfare
Modeling. John Wiley & Sons, Inc., 1995.

[9] Dennis, A., B. H. Wixom, and D. Tegarden. Systems Analysis and Design with

UML Version 2.0. John Wiley & Sons, Inc., 2nd ed. edition, 2005.

[10] DoD Research and Engineering. The 2008 Modeling and Simulation Corporate

and Crosscutting Business Plan, February 2009.

[11] Drewry, D. T., Jr. P. F. Reynolds, and W. R. Emanuel. “Optimiza-
tion as a Tool for Consistency Maintenance in Multi-Resolution Simulation”,
2006. URL www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA447044&Location=

U2&doc=GetTRDoc.pdf.

[12] FAA ATO Operations Planning. NAS System Engineering Manual, October
2006. URL www.faa.gov/about/office_org/headquarters_offices/ato/

service_units/operations/sysengsaf/seman/.

101

[13] Griffis, H. “Management of Modeling & Simulation”. Aircraft Survivability, 6–8,
Fall 2009.

[14] Guguen, P., C. Lignoux, D. Goumand, P. Saulais, and P. Reuillon. “ASTRAD:
Simulation platform, a breakthrough for future electromagnetic systems devel-
opment”, 2008.

[15] Hill, Raymond R., J. O. Miller, and Gregory A. McIntyre. “Applications of
discrete event simulation modeling to military problems”. Proceedings of the

2001 Winter Simulation Conference, December 09,2001 - December 12, volume 1,
780–788. Department of Operational Sciences, Air Force Institute of Technology,
Wright-Patterson AFB, OH 45433, United States, Institute of Electrical and
Electronics Engineers Inc, Arlington, VA, United states, 2001.

[16] Huebner, K. H., D. L. Dewhirst, D. E. Smith, and T. G. Byrom. The Finite

Element Method for Engineers. John Wiley & Sons, 4th ed. edition, 2001.

[17] Jamshidi, M. Large-Scale Systems: Modeling, Control, and Fuzzy Logic. Prentice-
Hall, Inc., 1st ed. edition, 1997.

[18] Jin, J. The Finite Element Method in Electromagnetics. John Wiley & Sons,
2nd ed. edition, 2002.

[19] Joint Technical Coodinating Group on Aircraft Survivability (JTCG/AS).
Aerospace Systems Survivability Handbook Series. Volume 5: Survivability Mod-

els and Simulations.

[20] Kim, E. J., Bielak J., and Ghattas O. “Large-scale Northridge Earthquake
Simulatino using Octree-Based Multiresolution Mesh Method”. 16th ASCE En-

gineering Mechanics Conference. July 2003.

[21] Langenderfer, J. C. and R. A. Ehret. “Common RF environment algorithms for
radar analysis: joint bottom”, 1998.

[22] Law, A. M. and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill
Higher Education, 3rd ed. edition, 2000.

[23] Leon-Garcia, A. Probability and Random Processes for Electrical Engineering.
Pearson Education, 2nd ed. edition, 1994.

[24] Miller, D.C. and J.A. Thorpe. “SIMNET: the advent of simulator networking”.
Proceedings of the IEEE, 83(8):1114–1123, Aug 1995. ISSN 0018-9219.

[25] Office of Science, Department of Energy. A Science-Based Case For Large-Scale

Simulation, July 2003.

[26] Rajanikanth, K. N., Y. Narahari, N. N. S. S. R. K. Prasad, and R. S. Rao. “A
robust and scalable architecture for airborne radar simulation”, 2003.

102

[27] Rao, S. S. The Finite Element Method in Engineering. Elsevier, 4th ed. edition,
2005.

[28] Skolnik, M. I. Introduction to Radar Systems. McGraw-Hill Higher Education,
3rd ed. edition, 2001.

[29] Smerpitak, K., N. Boonsung, and P. Ukakimaparn. “The application of finite
element to analyze the accuracy for radar system”. Control, Automation and

Systems, 2008. ICCAS 2008. International Conference on, 2266–2269. Oct. 2008.

[30] Smith, R.D. “Essential techniques for military modeling and simulation”. Simu-

lation Conference Proceedings, 1998. Winter, volume 1, 805–812 vol.1. Dec 1998.

[31] Sommer, J.-P., B. Michel, E. Noack, and B. Seiler. “Thermo-mechanical pre-
optimisation of radar sensor design by means of FEA and microDAC mea-
surements”. Electronics System-Integration Technology Conference, 2008. ESTC

2008. 2nd, 359–364. Sept. 2008.

[32] (SURVIAC), Survivability/Vulnerability Information Analysis Center.
“SURVIAC Model Guide”, 2008.

[33] USD(AT&L). “DoDD 5000.59 DoD Modeling and Simulation (M&S) Manage-
ment”, August 2007.

[34] Van Atta, R. Fifty Years of Innovation and Discovery, 20–29. DARPA: 50 Years
of Bridging the Gap. DARPA, 2008.

[35] Wilson, A.L. and R.M. Weatherly. “The aggregate level simulation protocol: an
evolving system”. Simulation Conference Proceedings, 1994. Winter, 781–787.
Dec. 1994.

[36] Wilson, D. R. and A. Phipps. “Militarys Use of Simulation”, October 2006. URL
www.scribd.com/doc/18336383/Militarys-Use-of-Simulation.

103

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–03–2010 Master’s Thesis Aug 2008 — Mar 2010

An Approach to Large Scale Radar-Based Modeling and Simulation

JON 10-166

Long, IV, Lester C., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/10-14

Air Force Research Laboratory, Sensors Directorate (Dr. Vasu Chakravarthy)
2241 Avionics Circle
WPAFB, OH 45433-7765
(937) 904-9039, Vasu.Chakravarthy@wpafb.af.mil

AFRL/RYRE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

.This research presents a method of aggregating, or reducing the resolution, of a commonly available DoD
simulation. It addresses the differences between varying levels of resolution and scope used in the Department of
Defense’s hierarchy of models pyramid. A data representation that aggregates engagement-level simulation data to use at
a lower resolution level, the mission-level, is presented and analyzed. Two formats of implementing this data
representation are developed and compared: the rigid cylinder format and the expanding tables format. The rigid
cylinder format provides an intuitive way to visualize the data representation and is used to develop the theory. The
expanding tables format expands upon the capabilities of the rigid cylinder format and reduces the simulation time.
Tests are run to show the effects of each format for various combinations of engagement-level simulation inputs. A final
set of tests highlight the loss in accuracy incurred from reducing the number of samples used by the mission-level
simulation. These tests culminate the work by deriving a notional scenario, applying the data cylinder representation,
and exploring the realistic problem of comparing accuracy and compuational constraints.

Large-Scale Simulation, Modeling and Simulation, Radar, Hierarchy of Models, Finite Element Method, Probability of
Survival, Aircraft Survivability

U U U U 118

Maj Michael A. Saville (ENG)

(937) 255-3636 x4719; michael.saville@afit.edu

	AFIT-GE-ENG-10-14_old
	Signature Page - 20100311 - 1239
	AFIT-GE-ENG-10-14_old

